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ABSTRACT

A thorough understanding of the Second Law of
Thermodynamics is essential for the engineer working
with energy systems.  How the Second Law is
presented to engineering students can have a profound
effect on their perception of and dependence on this
fundamental principle.  An alternative is described to the
usual way of presenting the microscopic Second Law.
This approach provides an intuitive argument separate
from and supportive of the axiomatic statements of
Clausius and Kelvin-Planck.  The impression can then be
made on the student that the Second Law describes the
inherent behavior of matter and energy rather than just
the functioning of heat engines.

NOMENCLATURE

e = energy associated with a particular level
E = total energy
H = enthalpy
n = population
N = number of members in the system
P = pressure
Q = heat
U = internal energy
S = entropy
T = temperature
V = volume
W = work

Greek
R = availability
N = irreversibility

differentials
* = incremental change
) = incremental transfer
d = exact differential
p = inexact differential

Subscripts
0 = depleted state
E = transport out of the system (exit)
J = associated with level "J"
I = transport into the system
S = property of the system

INTRODUCTION

Advances in computer technology have made
possible greater levels of detail and pervasiveness of
analysis of thermodynamic systems.  What can be done
or what is being done in research facilities is becoming
what is expected to be done in industry.
Thermodynamic analysis of systems will be even more
complex in the future as the variety of systems
increases as does the economic pressure to optimize
their performance.

Rather than eliminating the need for a thorough
understanding of principles by relegating the task of the
engineer to that of a technician or computer operator,
advancing technology requires ever greater
understanding on the part of the engineer.  Availability
and irreversibility as thermodynamic concepts rather
than waning into obscurity with the rise of the
computer have become standard output items on the
printouts generated by thermodynamic computer codes
ranging from chemical process to steam power plant
models.

A thorough understanding of what availability
and irreversibility are and how these are a measure of
the state of a system are a must for the engineer
working in the area of energy systems.  The way in
which these concepts are presented and the emphasis
which is placed on them can have a profound impact on
whether the student later considers them familiar and
even indispensable principles or relatively unimportant.
A microscopic perspective is essential to a proper
understanding of macroscopic thermodynamic systems--
especially as those systems become more complex and
less resembling simple heat engines.

Many students come away from a course on
macroscopic thermodynamics with the impression that
the Second Law only describes the limitations of heat
engines rather than the manifestation of behaviors
inherent within matter and energy.  Students taking an
additional course on microscopic thermodynamics may
not have any more understanding--especially if the text
opens with statistical mechanics.  Statistical mechanics
is often so formidable in and of itself that the purpose
for its application to microscopic thermodynamics can
be lost on the student.
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An alternative is offered here to the typical
presentation of microscopic thermodynamics.  The
Second Law and the associated quantities availability
and irreversibility are developed from first principles
from a microscopic perspective apart from the classical
dependence on heat engines and apart from an
emphasis on statistical mechanics.  The correspondence
between the microscopic and macroscopic expressions
is then shown.  Statistical mechanics could then be
introduced as a means by which to characterize the
particles too small to see and too numerous to count
which comprise energy systems.

AN ALTERNATIVE APPROACH

In a typical course on classical thermodynamics,
the Second Law and the associated quantities
availability and irreversibility are developed by
introducing the concept of heat engines and the
axiomatic statements of Clausius and Kelvin-Planck (e.g.
van Wylen and Sonntag, Chapters 5-7).  A typical
course on microscopic thermodynamics might introduce
the concepts of probability and statistical measures of
state and then illustrate these for the case of an ideal
gas (e.g., Pierce, Chapters 5-8).  In a somewhat novel
approach, Holman inserts a chapter on statistical
mechanics between a classical First Law chapter and a
classical Second Law one.

In teaching thermodynamics, it is important to
communicate that there is a relationship between the
microscopic and the macroscopic.  The hypothesis
which is assumed, but may not be sufficiently
emphasized for the student is that macroscopic
phenomena are manifestations of microscopic ones.
Thus, in order to fully understand the macroscopic one
must study the microscopic as well.

Furthermore, the development of the Second
Law along classical lines involving heat engines may
give the erroneous impression that it applies only to
heat engines--unless the presentation includes the
microscopic perspective.  Unfortunately, even if the
microscopic perspective is presented, it may be difficult
to see that there is a correspondence.  Perhaps the
greatest obstacle is the massive subject of statistical
mechanics which typically composes the bulk of the
text between particle kinetics and macroscopic
properties of a system.  Although unquestionably
essential, statistical mechanics may be a stumbling
block which regrettably divorces the microscopic and
macroscopic perspectives.

The alternative strategy presented here for
consideration is to take particle kinetics as far as
possible toward classical thermodynamics without
considering statistical mechanics, then show that there

is a correspondence between the two before digressing
into statistical mechanics.  This strategy emphasizes the
general concept of the correspondence first and the
mathematical means of bridging the gap second.  The
goal of this strategy is to prevent the correspondence
from being lost in the formidable details.  The first step
in developing these concepts is to build a consistent
foundation of thermodynamic definitions and
relationships which can be applied to either microscopic
or macroscopic perspectives.

Thermodynamic Systems

A thermodynamic system is an abstract
conceptual tool.  A thermodynamic system is a closed
region in space, the extent of which is defined by the
system boundary.  A system boundary does not itself
occupy any space and has no physical existence.  A
system boundary can be defined anywhere one chooses,
whether realistic or not, practical or not, physically
constructable or not.  One is not limited as to where a
system boundary can be defined; however, the choice
of a system boundary greatly effects its usefulness in
any analyses.

The system boundary conceptually separates
the system from its surroundings.  The intersection of
a system and its surroundings is the null set.  The union
of a system and its surroundings is the entire set (viz.,
the cosmos).  The surroundings can be divided into the
immediate surroundings and the ultimate surroundings;
but this distinction is somewhat artificial and must
always be arbitrarily limited in some way.

There are three types of systems.  An isolated
system is one in which there is no transfer of energy or
matter with the surroundings.  A closed system is one
in which there is transfer of energy, but not matter.  An
open system is one in which there is an transfer of both
energy and matter.  It is essential to emphasize that the
type of system is determined solely by how one defines
the system boundary (van Wylen and Sonntag, pp.
17-19).

Energy Transfer Between a System and Its Surroundings

There are three modes by which energy is
transferred between a system and its surroundings:
transport, work, and heat.  Transport refers to the
transfer of energy by virtue of the transfer of matter.
Transport applies only to open systems.  Work refers to
the transfer of energy by the application of a force (e.g.,
electromagnetic or gravitational).  Heat refers to all
other means of energy transfer (e.g., radiation).  Work
and heat apply to closed and open systems.
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It is important to emphasize that work and heat
are only modes by which energy is transferred.  Energy
is a property; whereas work and heat are not properties.
A system and its surroundings can contain energy;
whereas they cannot contain heat or work.  Heat and
work only exist at a system boundary and only exist
while the transfer is taking place.  The sign convention
used by van Wylen and Sonntag (p. 82) and Pierce (p.
186) is positive for work done by the system on the
surroundings and for heat transferred from the
surroundings into the system.

The First Law of Thermodynamics

The concept of energy is inseparably linked to
the First Law of Thermodynamics.  The First Law is
deduced from observations and can be stated as
follows: there is a property (energy) that is conserved or
remains constant in any process or interaction.

For an isolated system there is no transfer of
energy with the surroundings.  Therefore, the energy of
an isolated system is constant.  Denoting a change in
the energy of the system by *ES, this relationship can
be expressed by Equation 1.

*ES=0 (1)

For a closed system the only means of energy
transfer are work and heat.  Denoting an incremental
transfer of heat by )Q and work by )W, this
relationship can be expressed by Equation 2 (van Wylen
and Sonntag, p. 96).

*ES-)Q+)W=0 (2)

For an open system energy is transferred by
means of transport, work, and heat.  Denoting an
incremental transport into and out of the system by *EI

and *EE respectively, this relationship can be expressed
by Equation 3 (van Wylen and Sonntag, p. 124).

*ES-)Q+)W-*EI+*EE=0 (3)

Availability and Irreversibility

Energy is often incorrectly defined as the
potential for doing work; whereas, availability more
nearly fits this definition.  More specifically, availability
is the maximum energy which can be transferred
between a system and its surroundings in such a way
as to theoretically extract work (van Wylen and
Sonntag, p. 282).  Whether or not such a maximum
extraction of work is possible introduces the concept of
irreversibility.  Irreversibility is defined as the difference
between the ideal maximal and actual work extraction

for a process.  Denoting a change in availability by )R
and irreversibility by )N, this relationship can be
expressed by Equation 4 (van Wylen and Sonntag, p.
276).

)N=-)R-)W$0 (4)

The negative signs in the above expression arise from
the sign convention for work being opposite of that for
transport and heat transfer.

Because availability is the theoretical maximum,
-)R must always be greater than or equal to )W.
Thus, )N must always be greater than or equal to zero.
It is important to emphasize that this inequality which
relates irreversibility to availability and work is not an
empirically deduced principle--as is the First Law--it is a
definition.  It will be shown subsequently that this
expression for a change in irreversibility, )N, is actually
the Second Law.  Expressions for the work, )W, are
straightforward.  What remains to be developed are
expressions for the change in availability, )R.

Energy is a property of a system, and as such
depends only on the state of the system.  Availability is
based on ideal maximal work, which implies an
interaction with the surroundings.  Thus availability
depends on the state of the system and its
surroundings.  It is intuitive that both measures are
necessary; because there are many systems which
contain significant energy, but which seem incapable of
doing any work.  It is also intuitive that the availability
of a system depends on its relation to the surroundings.
For example, a tank containing air at room temperature
and 1 bar has little or no availability.  However, if the
atmospheric pressure were only 0.5 bar, the same tank
of air--all other things being equal--would have
availability to, for instance, drive a turbine.

Partitioning of Energy within a System

Central to the understanding of availability is
the concept of energy partitioning; or how the energy is
distributed within a system.  In a system there are a
finite multitude of attainable energy levels; and within
each energy level there can be a number of states which
have the same energy (Pierce, p. 157).  Not all energy
levels are attainable by a system.  For instance, a level
which exceeds the energy of the entire system would
not be attainable.  Furthermore, not all energy states
within a level are attainable.  Although the population of
a level may be large, the Pauli Exclusion Principle
asserts that the population of a unique energy state is
limited to no more than one (Pierce, p. 170).  Quantum
theory asserts that the attainable energy states and thus
levels can assume only discrete values (Pierce, p. 166).
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                 energy levels  
partitioning   0   1   2   3   4
     A        ab               c
     B        ac               b
     C        bc               a
     D        a    b       c    
     E        b    a       c    
     F        a    c       b    
     G        c    a       b    
     H        b    c       a    
     I        c    b       a    
     J        a       bc        
     K        b       ac        
     L        c       ab        
     M            ab  c         
     N            ac  b         
     O            bc  a         

Table 1. Energy Partitionings
Figure 1. Change in Energy Levels

Figure 2. Change in Energy Levels

Consider an isolated system containing N
irreducible, distinct, although not necessarily
distinguishable, members (N need not be large).  The
system has attainable energy levels, eJ.  The population
of each level is nJ.  The populations, nJ, need not be
large (typically many of the attainable energy levels in a
system are empty).  Two of the constraints on the
system are the conservation of members;

3nJ=N (5)

and the conservation of total system energy (Pierce, p.
136).

3nJeJ=ES (6)

For example, consider a system containing 3
members (abc) and having 5 discrete attainable energy
levels (0-4) and a total system energy of 4, there are 15
different attainable partitionings (A-O) as illustrated in
Table 1 (Pierce, p. 129).

Changes in Population and Attainable Energy Levels

Consider an arbitrary change in the total energy
of a system, *ES, with populations and levels as
indicated by Equation 6.  This change in energy is given
by:

*ES=3eJ*nJ+3nJ*eJ (7)

The first term, 3eJ*nJ, represents a change in
energy due to a redistribution of populations.  The
second term, 3nJ*eJ, represents a change in energy due
to a change in energy levels.  These changes are
illustrated in Figures 1 and 2 respectively (Pierce, pp.
184-186).

An analogy which is helpful in understanding
the changes illustrated in Figures 1 and 2 is that of
parallel dams on parallel rivers, each with a different
elevation (not series dams on a single river).  In this

illustration energy level is analogous to elevation and
population is analogous to volume.  The change in
Figure 1 is analogous to exchanging sediment from the
upper reservoirs for water from the lower such that the
elevations and the total volume of water remain
constant.  As a result of this change there is more
volume in the upper reservoirs and less in the lower.
The change in Figure 2 is analogous to increasing the
total sediment in the reservoirs such that the elevations
increase, but the total volume of water remains
constant.  In both cases the energy of the system is
increased by raising the center of gravity of a constant
volume of water.  However, in the first case, the
attainable hydro power remains constant; whereas in
the second case it increases.
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The process in Figure 1 is a redistribution of
populations within the same levels; thus there is no
useful work associated with this process.  The process
in Figure 2 is a change in levels with the populations
locked into each level.  Useful work could be extracted
to the surroundings as levels drop or input to the
system as levels increase (Pierce, p. 185).

Availability and the Depleted State

As stated previously, expressions for the
availability of a system must necessarily consider the
state of the system and the state of the surroundings.
For the purposes of thermodynamic analysis it is
necessary to distinguish between the immediate and
ultimate surroundings.  Thus it is assumed that the
immediate surroundings of a system can, at any given
instant, be characterized in some way by energy levels
and populations as implicitly assumed for the system.
Furthermore, it is postulated that, at any given instant,
there exists a "depleted state" of the system with
respect to the immediate surroundings such that the
system in that state will have zero availability (viz.
unable to do any more useful work unless the state of
the immediate surroundings changes).

This depleted state is designated by the
subscript "0" (zero).  The corresponding energy of the
system is designated by ES0, populations, nJ0, and
levels, eJ0.  This "depleted state" is not "absolute zero"
or zero energy (i.e., eJ0 are not necessarily zero).  The
"depleted state" is depleted relative to the immediate
surroundings, not "absolutely depleted".

The difference between a change in energy and
one in availability is called the "unavailable energy".
Returning to the dam analogy, the "unavailable energy"
is the energy associated with the volume below the
turbine inlets.  The "unavailable energy" for a dam is
equal to the product of the elevation of the turbine inlet
and the change in the corresponding volume of the
reservoir.  The microscopic equivalent of this
"unavailable energy" is equal to the product of the
depleted energy level and the change in the
corresponding population or, eJ0*nJ.  Subtracting this
change in "unavailable energy" from the total change in
energy (Equation 7) yields Equation 8 for the change in
availability.

)R=3(eJ-eJ0)*nJ+3nJ*eJ (8)

The first term in Equation 8 accounts for the
redistribution of populations and the second term for
the change in energy levels from the present to the
depleted state.  Using the dam analogy, eJ and eJ0 are
the initial and final elevations respectively and nJ and nJ0

the initial and final volumes respectively for reservoir

"J".  The first term is the elevation difference times the
change in volume for each reservoir; and the second
term is the volume times the change in elevation for
each reservoir.  Recognizing that *eJ0=0, Equation 9
can be differentiated to obtain Equation 8.  Therefore,
Equation 9 is the microscopic equation for the
availability of a closed system.

R=3(eJ-eJ0)nJ (9)

Thus the availability of a closed system is equal
to the sum of the product of the present populations
and the difference between the present and depleted
energy states.  This expression also follows intuitively
from the dam analogy.

Equations 3 and 9 can be combined to give the
microscopic equation for the availability of an open
system.

R=3(eSJ-eSJ0)nSJ-3(eIJ-eIJ0)nIJ+3(eEJ-eEJ0)nEJ(10)

Here the additional subscripts S, I, and E have been
added to distinguish between the system, transport
into, and out of (exiting) the system respectively.

Consider the system described in Table 1 with
an initial state of A and a depleted state of Z.  In state
Z consider the energy levels to have dropped from
01234 to 00112; and the populations to have changed
from 20001 to 11100.  The energy excess relative to
the depleted state would be:

E-E0=(2×0+0×1+0×2+0×3+1×4)
    -(1×0+1×0+1×1+0×1+0×2)=3

The availability would be:

RA=2×(0-0)+0×(1-0)+0×(2-1)
  +0×(3-1)+1×(4-2)=2

If the initial state had been D rather than A the excess
energy would be the same; but the availability would
be:

RD=1×(0-0)+1×(1-0)+0×(2-1)
  +1×(3-1)+0×(4-2)=3

Similarly for initial states J and M respectively:

RJ=1×(0-0)+0×(1-0)+2×(2-1)
  +0×(3-1)+0×(4-2)=2

RM=0×(0-0)+2×(1-0)+1×(2-1)
  +0×(3-1)+0×(4-2)=3

The microscopic expression for the change in
irreversibility of a closed system can now be obtained
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by substituting Equation 8 into Equation 4 to yield
Equation 11.

)N=-3(eJ-eJ0)*nJ-3nJ*eJ-)W$0 (11)

Similarly, the expression for an open system can be
obtained in the same way using Equation 10.

)N=-3(eSJ-eSJ0)*nSJ-3nSJ*eSJ

   +3(eIJ-eIJ0)*nIJ+3nIJ*eIJ

   -3(eEJ-eEJ0)*nEJ-3nEJ*eEJ-)W$0 (12)

CLASSICAL THERMODYNAMICS

Equations 11 and 12, although not in their most
familiar forms, are the Second Law of Thermodynamics
for closed and open systems respectively.  In developing
these equations no mention has been made of pressure,
temperature, entropy, or heat engines--all macroscopic
concepts.  It will now be shown that the above
microscopic expressions have a direct correspondence
to the classical macroscopic expressions.

Equation 7 is the change in energy for a closed
system.  Only the second term, 3nJ*eJ, contributed to
the ideal work of the system.  For a simple stationary
classical system where only the internal energy, U, is
significant and the only means of exchanging work with
the surroundings is mechanical, the ideal work
performed on the system is given by Equation 13 in
terms of the pressure, P, and the volume, V (van Wylen
and Sonntag, p. 70).

-pWIDEAL=-PdV (13)

Therefore, these two terms must be equal.

3nJ*eJ=-PdV (14)

Here the distinction is made between exact differentials
(i.e., properties of the system) and inexact differentials
(i.e., work and heat) by the two symbols for
differentiation, d and p, respectively.

The classical expression of the First Law for a
closed system which can be taken as one definition of
entropy, S, and involving the temperature, T, is given by
Equation 15 (van Wylen and Sonntag, p. 212).

dU=TdS-PdV (15)

For this system dU=*ES; therefore, the second term in
Equation 7 must be equal to TdS.

3eJ*nJ=TdS (16)

Furthermore, the second term in Equation 8 must be
equal to T0dS.

3eJ0*nJ=T0dS (17)

Which means that Equation 11 must be equivalent to
Equation 18.

N=-(T-T0)dS+PdV-pW$0 (18)

Adding Equations 2, 15, and 18 yields Equation 19.

N=T0dS-pQ$0 (19)

which is the classical expression of the Second Law for
a closed system (van Wylen and Sonntag, p. 277).  The
differential availability can be found by adding Equations
2 and 4 and subtracting Equation 19.

R=dU-T0dS (20)

which is the classical expression for the availability of
a closed system (van Wylen and Sonntag, p. 283).
Similarly, Equation 12 can be used to determine
corresponding expressions for an open system.

N=T0dSS-T0dSI+T0dSE-pQ$0 (21)

R=(dUS-T0dSS)-(dHI-T0dSI)+(dHE-T0dSE) (22)

Here in the case of an open system, enthalpy, H, is the
appropriate measure of energy for the inlets and exits.

SUMMARY

The preceding derivations show that
microscopic expressions for availability, irreversibility,
and the Second Law can be developed apart from
references to heat engines.  Thus, reinforcing the
concept that these are not restricted to heat engines.
This also reinforces the veracity of the Clausius and
Kelvin-Planck axioms.

The similarity and correspondence of the
microscopic and macroscopic relationships illustrates
that there is an equivalence of the two perspectives and
reinforces the hypothesis that macroscopic phenomena
are manifestations of microscopic ones.

The impression is also given that if one were
somehow able to characterize the energy of every
member of a system, then one could compute classical
thermodynamic properties from particle kinetics as
illustrated for the system in Table 1.  This is also a
logical point at which to introduce statistical mechanics
as a means to solve the logistical problem of systems
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composed of members too small to be seen and too
numerous to be counted.
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