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MASS, LATENT-, AND SENSIBLE-HEAT TRANSFERS

The heat transfer within an evaporative cooling tower may be
expressed in terms of sensible and evaporative (or latent) heat transfer.
The differential sensible-heat transfer rate, dQS, from the water droplets in
the cooling tower is expressed as the product of the local heat transfer
coefficient, H; and the temperature difference between the local water
temperature, Tw, and the local air dry-bulb temperature, Tdb; and the
differential interfacial area, dAi:

dQg = H (T -Ty,) dA; 1)
The differential evaporative mass transfer rate, dE, is similarly related to
the driving potential, B, and the mass transfer coefficient K:

dE = K B dA, (2)
where the mass transfer driving potential is defined in terms of the mass
fraction, f, of the diffusing species (water) in the far field; and the mass

fraction of the diffusing species at the interface, fs' which is assumed to

be the saturation value [2]. This relationship is defined by
f -f
B= =
T, (3)
In the case of mixtures of air and water vapor, it is more
convenient to express the mass transfer driving potential in terms of the
absolute humidity, w, than the mass fraction, f. The relationship between

absolute humidity and mass fraction is

- w
= g (4)
The differential evaporative mass transfer rate, dE, may then be expressed

in terms of the absolute humidity by combining Equations 2, 3, and 4



(wg - w)

dE = K ~(Tfw) dA, (5)
The differential mass transfer rate is related to the differential latent-heat
transfer rate, dQe, through the enthalpy of saturated water vapor, hg:

dQe = h g dE (6)

The sum of the differential sensible- and latent-heat transfer
rates is the differential total heat transfer rate, th:

dQ, = dQg + dQ, (7
The differential total heat transfer rate is also related to the differential

temperature change, dT, _, of the water, the constant-pressure specific heat

W
of the water, pr, and the mass flowrate of the water, L, by the
conservation-of-energy principle,

dQ, = - tC—ar, ~A\LL, Tw)

The differential interfacial area, dAi, within a differential volume,
dx dy dz, of fill is expressed

dAi = a dx dy dz (8)
where a is the interfacial area per unit volume.

The three transfer equations of interest are then

dQS = Ha (Tw-Tdb) dx dy dz (9)
Ms Y
dE = Ka (1 +w) dx dy dz (10)
s - %
dQezhg Ka ( 1+ w) dx dy dz (11)

For cylindrical coordinates dx dy dz is replaced with 2 n r dr dé dy.

CONSERVATION EQUATIONS

The simulation of the cooling tower transfer processes is based on

the following conservation equations:



1. Conservation of mass of air
Conservation of mass of water vapor

Conservation of energy for the gas phase

[ "R S B oS

Conservation of energy for the water phase.
These conservation equations in conjunction with the Bernoulli equation [3]
(with headloss included) constitute the set of equations solved in the

present simulation. The form of the Bernoulli equation used is

v (o ) 2 wa—’“’”
6 % obv 5 B e, A
1 29, g. =pyt 2gc¢ g. losses 12)

where the subscripts 1 and 2 represent two locations along a streamline, p
is the pressure, p is the density, V is the total velocity, de is Newton's
constant, g is the acceleration of gravity, and y is the elevation. These
equations are applied in their steady-state, steady-flow form. The
independent variables are the horizontal distance, x, vertical distance, vy,
total mass flowrate of water, L, inlet water temperature, Th' and the
ambient wet- and dry-bulb temperatures (wa and Tdb' respectively).
The dependent variables in the conservation equations are the air velocity,
V, the absolute humidity, w, the enthalpy of the air-water vapor mixture,
ha, the water temperature, Toge and pressure, p. The auxiliary

quantitities, wet bulb temperature, dry-bulb temperature, and density are

determined using the following thermodynamic relationships for air-water

vapor mixtures from computed values of w, har and p:
i
- db
ha = f . Cpa dT + w hg (13)

where Cpa is the constant-pressure specific heat of dry air;



- P 1+w (14)
P T4y * 459.67 R+ uR__ ;

where R, and R are the ideal gas constants for dry air and water vapor,
respectively;
h = fTaS C,..dT +uw_h (15)
a 5 pa s g
where Tas is the adiabatic saturation temperature which is assumed to be
equivalent to the wet-bulb temperature, wa; and W is the absolute
humidity of saturated air at Tas‘ These relationships are given in
Reference 4. The property values are tabulated in References 5 and 6.
The interrelationship among the dependent and independent
variables is evident from the formulation of the conservation equations that

follow. The conservation of mass for the water vapor within a control

volume is expressed
)
Jff Ka (T+w ) dx dy dz = [f wp V-dA (16)
1+
where V-dA is dot product of the two vectors V and dA. The conservation

of energy for the air within a control volume is

w_~-uw

S
fjf[hg Ka ( IT+w ) + Ha (T~Typ)] dx dy dz = ffh_a_?_‘%_q& an

: . kil L+ ;
Finally, the conservation of energy for the water within a control volume is

expressed

w_-w

S
L C]‘:‘W AT, = - jj'f[hg Ka (T+w) + Ha(T-T ;)] dx dy dz (18)

MODELING ASSUMPTIONS

1. Steady-state, steady-flow;

2. Two-dimensional symmetry (i.e., lateral symmetry in cartesian
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coordinates and  circumferential symmetry in cylindrical
coordinates);

3. Wet-bulb temperature is equivalent to adiabatic saturation temper-
ature;

4. The cooling tower is externally adiabatic (thus, in the case of a
natural-draft tower, the enthalpy of the air is constant in the
chimney);

5. The atmosphere around a natural-draft tower is assumed to be
isentropic, thus the ambient pressure may be related to the

elevation by the following equations [3]:

P_a_ d (1 - YG)Y (19)

Pao
9YP,,

o = gCPaO (20)
CpaCva

- (21)
Cpa

6. The water flows vertically downward.
7. In round counterflow towers the air flows between colinear hyper-

boloid pathlines.

Modeling the Rain and Fill Zones in a Counterflow Tower

In the rain and fill zones of counterflow towers, the transport
and conservation equations are solved using an integral technique [7]. The
air in these zones is assumed to flow between colinear hyperboloid pathlines
(see Figures 4 and 5). The fraction of the total airflow which flows

between each of these pathlines is computed from the Bernoulli equation
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(with headloss) and reflects the resistance to flow in the rain zone as well
as the fill. The flow-resistance characteristics of the fill may vary radially
(from path to path) as well as wvertically. At each elevation the
pressure-drop and transfer characteristics of the fill are numerically
integrated in the radial direction to obtain average characteristics. In this
radial  integration, the pressure-drop, mass-, and heat-transfer
characteristics are weighted (for each path within the fill) by the velocity
head and airflow and waterflow, respectively. These average
characteristics are then used to solve the one-dimensional integral

governing equations.

Pressure Rise Across the Fan in Mechanical-Draft Towers

In mechanical-draft towers the pressure rise across the fan,

BPsan - is computed using the following relationship:

350 Ofan Wfan Pfan (22)
apfem - G

where Nfan and Wf are the efficiency and energy input to the fan,

an
respectively, and Pian is the density of the air immediately upstream of the
fan. The fan efficiency is an implicit function of airflow, air density, input
power, and the pressure drop across the fill. The functional relationship
for fan efficiency must be determined from field or laboratory measurements
and supplied to the computer program. The computer program uses a cubic

iteration to solve the pressure balance at the fan for the airflow, G, and

the fan efficiency, Nfan
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Fill Transfer Characteristics

Most currently available fill transfer characteristics (e.g., [1])
have been obtained through Merkel's analysis [8] which combines the
sensible-heat and mass transfer. The algebraic manipulation employed by
Merkel eliminates sensible-heat transfer from the equation leaving only the
mass transfer. Merkel referred to the resulting transfer coefficient as the
"total transfer coefficient;" however, according to Merkel's notation, it is
equivalent to the mass transfer coefficient, Ka, used in the present
analysis.

A sensible-heat transfer coefficient, Ha, as well as mass transfer
coefficient, Ka, are required by the present analysis. In the event that
only one is available, the Lewis analogy is applied [9]. In contrast to the
Merkel analysis, which assumes a constant Lewis number, Le, of unity, the
present model uses a local Lewis number that varies with temperature and
absolute humidity and the constant-pressure specific heat, Cpa' to obtain
separate sensible-heat and mass transfer coefficients and to extend the
measured values of Ka and Ha to temperatures and absolute humidities other
than those measured. The Lewis analogy is expressed by:

Ha = C, Le Ka (23)
The local Lewis number is determined from the local molecular thermal
conductivity, k, density, p, diffusion coefficient, D, and constant-pressure

specific heat:

(24)
where k, p, and Cpa depend on both temperature and absolute humidity and
D depends only on temperature. No hot-water temperature correction factor

is applied in the present model.
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DISCRETIZATION OF COOLING TOWER

Simulation of the mass and heat transfer processes in the cooling
tower requires that the tower be discretized, or divided into computational
cells. Each cell is treated as a control volume, and the governing
equations are applied to each. At each cell the computed conditions from
adjacent upstream cells are utilized. These conditions (e.g., enthalpy,
velocity, density, temperature, absolute humidity, and pressure) are
defined at nodes located at the mid-points of the cell boundaries. The use
of boundary nodes assures conservation of mass and energy from cell to cell
(viz., the mass leaving the east face of one cell enters the west face of the
adjacent cell by virtue of common storage of the variables, see Figure 6).
Applying the Bernoulli, conservation, and transfer equations (i.e., 12, 16,
17, and 18) to each cell results in a set of nonlinear simultaneous equations
(four for each cell) implicitly relating the four dependent variables (viz. w,
ha' Tw, p)- The auxiliary quantities (i.e., wa, Tdb' p) are related to
the dependent variables by the thermodynamic relationships (i.e., Equations
13, 14, and 15). These implicit nonlinear simultaneous equations are solved
using the Gauss-Seidel method (viz. point-by-point successive substitution)

[7). This solution procedure is detailed subsequently.

Crossflow Towers

Figure 6 illustrates the cell and node configuration for crossflow
towers. In this scheme the water temperature and the vertical air velocity
are defined at the top and bottom of each cell (referred to as the north and
south boundaries, respectively) while the enthalpy, humidity, and
horizontal air wvelocity are defined at the left and right of each cell

(referred to as the east and west boundaries, respectively).
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Node and Cell Index Notation Showing Air and Water Paths
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The distribution of cells in the fill zone gives the solution a
two-dimensional character (assuming circumferential or lateral symmetry ).
A one-dimensional distribution of cells is considered sufficient in the
chimney region of natural-draft towers and the fan and recovery stack
region of mechanical-draft towers.

The integrals in the conservation equations for the individual
cells are evaluated using only the values of absolute humidity, dry-bulb
temperature, saturated absolute humidity, and air enthalpy at the exit
planes of each cell. For example, W is computed based on the water
temperature leaving the cell (viz. at the south face). This integration
results in a pure implicit scheme which is more stable numerically than an
explicit scheme using inlet quantities. The exclusive use of exit quantities
precludes local violations of the second law of thermodynamics which result
from overshoot when using inlet or average quantities. With the present
implicit scheme, satisfying the second law of thermodynamics takes
precedence over satisfying a transfer equation. Although the transfer
equations may not always be satisfied with the present implicit scheme, the

conservation equations are always satisfied.

Counterflow Towers

The arrangement of cells and nodes for counterflow towers is
illustrated in Figure 2. The distribution of cells is such that the solution
is one-dimensional. The integrals in the conservation equations for the
individual cells are evaluated using only the values of absolute humidity,
air dry-bulb temperature, saturated absolute humidity, and the air enthalpy

at the exit planes of each cell.
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The rain zone, fill, spray zone, and chimney (or fan and
recovery stack) are separated, and heat transfer and pressure drop coef-
ficients appropriate to the respective regions applied. Again, the tempera-
ture, velocity, density, pressure, enthalpy, and absolute humidity are

specified at the midpoints of the cell boundaries.

BOUNDARY CONDITIONS

Crossflow Towers

The boundary condition for the water is specified at the top row
of cells (top of the fill). The entering waterflow distribution can be
arbitrarily specified. The boundary conditions for the air are inlet wet-
and dry-bulb temperatures, pressure, and velocity, as well as the ambient
pressure at the exit of the chimney. An arbitrary distribution of inlet
wet-and dry-bulb temperatures can be specified. The ambient far-field

velocity is assumed to be zero.

Counterflow Towers

The boundary condition for the water is specified at the point of
discharge from the spray nozzles. The entering waterflow distribution can
be arbitrarily specified. The boundary conditions for the air are inlet wet-
and dry-bulb temperatures, pressure, and velocity as well as the ambient
pressure at the exit of the chimney. An arbitrary distribution of inlet wet-

and dry-bulb temperatures can be specified.
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SOLUTION PROCEDURE

Crossflow Towers

The iterative solution process illustrated in the flowchart, Figure
7, is initiated by solving a simplified point model to obtain initial values for
the air flowrate and wet- and dry-bulb temperature at the exit of the
cooling tower. The results are used to provide an initial distribution of the
absolute humidity, enthalpy, and wet- and dry-bulb temperatures through-
out the tower. Linear interpolation from entrance to exit is used to obtain
initial values at intermediate locations.

The computation of sensible- and latent-heat transfer rates starts
in the upper lefthand corner cell and proceeds one column at a time. The
computation for each cell is an iterative process since the driving potential
for the transfers utilizes the conditions at the exit. After the energy
transfer in the cells located in the fill has been computed, the air is
assumed to be thoroughly mixed as it flows through the chimney (or fan)
without further heat or mass transfer (i.e., the two-dimensional analysis
within the fill region is patched onto a one-dimensional analysis at the exit
of the fill).

With the temperatures and absolute humidities established and a
trial airflow estimated, an evaluation of the airflow distribution is under-
taken. The Bernoulli equation (with headloss) and the conservation of mass
(of_ air) is applied to each cell. The airflow distribution is solved in the
same manner as a branched pipe network having interconnecting paths
which permit crossflow.

A solution of the Bernoulli and conservation of mass of air

equations provides values of velocity and pressure at the exit face of each
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Figure 7. Flowchart of Solution Procedure for Crossflow Towers
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cell within the fill. An average velocity is computed for the plenum and
the Bernoulli equation used through the chimney or fan. The fan and
recovery stack in mechanical-draft towers are each modeled as a single cell.
In natural-draft towers the chimney is discretized into a number of cells
(see Figure 3).

Based on the new flow distribution, revised values of tempera-
ture, enthalpy, and humidity ratio are computed. These values reflect
vertical mixing between adjacent cells in the fill. The sensible- and latent-
heat trasfer rates in the various cells are recomputed using the tempera-
tures, densities, and velocities from the preceding step.

The iterative process is considered to have converged when the

computed pressure at the exit plane corresponds to the ambient pressure.

Counterflow Towers

The iterative solution process illustrated in the flowchart, Figure
8, is initiated by solving a simplified point model to obtain initial values
for the air flowrate and wet- and dry-bulb temperature at the exit of the
cooling tower. The results are used to provide an initial distribution of the
absolute humidity, enthalpy, and wet- and dry-bulb temperatures through-
out the tower. Linear interpolation from entrance to exit is used to obtain
initial values at intermediate locations. An initial estimate of the airflow
distribution is computed based on the potential flow solution for a
cylindrical jet impinging on an infinite wall perpendicular to its centerline.

The solution procedure is initiated in the rain zone and is based
on an assumed cold-water temperature so that heat transfer computations
can proceed. When the computations are advanced to the spray nozzles a

check is made to determine if the computed hot water temperature corres-
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ponds to the specified hot water temperature. If the computed and
specified hot water temperatures do not agree, the cold water temperature
is adjusted and the heat transfer computations redone. When the computed
and specified hot water temperatures agree, the pressure computations are
performed. The airflow within the rain and fill zones is redistributed
among the pathlines (see Figures 4 and 5) according to the the Bernoulli
equation (with headloss included) such that dynamic pressure (i.e.,
p+pv2/2gc) at the top of the fill is uniform in the radial direction. The
computed pressure at the exit plane is then compared to the specified
ambient pressure. If the pressures are not in agreement, the airflow is
appropriately adjusted and the heat transfer computations restarted. This
series of computations continues until the computed hot water temperature
and exit pressure correspond with the wvalues prescribed as boundary

conditions.

FEATURES OF THE MODEL

The present model has been developed into a computer program,
coded in FORTRAN 77, comprised of a main program and 38 subprograms in
approximately 7000 statements. The computer program requires 109K bytes
(1 byte = 8 binary bits) of memory. However, only 33K bytes are required
for any one geometry (i.e., mechanical-crossflow) which permits the use of
the program on many microprocessors. The execution time is approximately
30 seconds on an HP-1000F minicomputer or 1 second on an IBM-370.

The computer program models mechanical induced-draft crossflow,
mechanical induced-draft counterflow (round-type), natural-draft crossflow,

and natural-draft counterflow towers.
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Either the hot water temperature or the range may be specified,
and the water distribution may be uniform or nonuniform. The ambient
wet- and dry-bulb temperatures may be uniform or an arbitrary vertical
profile may be specified.

The fan efficiency in mechanical-draft towers may be specified as
a constant or as a function of flow, pressure differential, power input, etc.

Any number of fill types may be specified at symmetric locations
within the fill region. Thus the computer program can handle hybrid fills
as well as voids and obstructions. This feature is illustrated in Figure 9.

The computer program also provides dimensionless graphs of

velocity, pressure, temperature, etc., and a map of fill type and location.

Numerical Formulation of the Conservation Equations

The finite-integral formulation of the conservation equations (viz.
Reynolds Transport [3]) is used rather than the finite-difference formula-
tion [7]. The two formulations are equivalent mathematically. However, in
finite-precision arithmetic as performed by a computer they are not. There
is a distinct advantage to the finite-integral formulation over the finite-
difference: the numerical evaluation of integrals involves the addition of
many numbers of the same order of magnitude, whereas the numerical
evaluation of differences involves the subtraction of many numbers of same
order of magnitude. Subtraction of numbers of the same order of magni-
tude requires greater precision to obtain the same accuracy in the result
than does addition. As the number of cells increases the difference
between quantities in any two adjacent cells decreases, thus requiring even
greater precision with a finite-difference formulation. This problem is not

encountered with the finite-integral formulation. Thus the choice of the
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finite-integral formulation permits the present model to use single-precision
(32 binary bit) numerical arithmetic rather than double-precision,

effectively reducing the computational time by a factor of two.

COMPARISON WITH FIELD DATA AND CONCLUSIONS

The present model has been verified using cooling tower test data
for mechanical-draft crossflow, natural-draft crossflow, and natural-draft
counterflow towers. This verification includes uniform as well as hybrid
fills. The tower locations and types used in the verification are listed in
Table 1. Also listed in Table 1 are the ambient conditions, water loading,
hot water temperature, and cold water temperature for each test case.
Figure 10 provides a comparison of the test data and model predictions for
the cold water temperature. The fill characteristics used in the model for
this comparison with test data were taken from Lowe and Christie [1] with-
out calibration or adjustment.

The present model is coded in FORTRAN77 and requires 109K
bytes of memory. However, only 33K bytes of memory are required for any
one particular geometry, which permits the use of the model on many micro-
processors. The execution time on an HP-1000F minicomputer is approxi-
mately 30 seconds, making the present model relatively inexpensive to use.

The present model can be used to predict tower performance,
reduce test data, and evaluate the effect on tower performance of modifica-
tions to existing towers. It can also be used to predict the performance of
cooling towers which are being considered for construction, provided

sufficient information is known, such as fill characteristics.
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TABLE 1

Comparison of the Present Model and Field Data
For Cold Water Temperature

Teold
Location Type Thot Tdb wa Field Computed Error
PSP NDC 91.3 60.2 59.7 75.6 76.4 0.8
PSP NDC 109.5 85.0 69.9 89.0 88.4 -0.6
PSP NDC 104.8 68.6 66.9 84.4 83.9 -0.5
PSP NDC 107.1 77.8 70.3 87.1 87.0 -0.1
PSP NDC 111.1 85.8 68.9 85.8 85. 7 -0.1
PSP NDC 111.9 87.3 69.8 86.4 86.3 -0.1
PSP NDC 110.1 53.1 47.3 81.3 82.5 1.2
PSP NDC 92.3 39.0 35.8 74.5 73.0 -1.5
SNP NDX 104.7 89.9 74.9 93.0 93.3 0.3
SNP NDX 106.3 83.7 74.8 93.1 91.7 -1.4
SNP NDX 99.9 56.5 47.9 77.6 77.7 0.1
SNP NDX 100.5 53.4 49.5 77.5 77.9 0.4
BFNP MDX 86.0 NA 55.1 73.2 73.6 0.4
BFNP MDX 86.4 NA 57.5. 74.1 74.5 .5
BFNP MDX 90.8 NA 55.6 75.6 76.1 0.5
BFNP MDX 92.4 NA 50.3 74.7 75.3 0.6
BFNP MDX 94.5 NA 56.8 77.7 78.2 0.5
BFNP MDX 92.8 NA 60.3 78.2 78.5 0.3
BFNP MDX 94.1 NA 61.5 79.3 79.4 0.1
BFNP MDX 93.4 NA 48.2 75.3 75.6 0.3
BFNP MDX 839.0 NA 48.7 72.8 73.4 0.6
BFNP Phelps MDX 92.7 NA 61.4 78.5 79.1 0.6
BFNP Phelps MDX 102.1 NA 59.6 81.4 81.7 0.3
BFNP Phelps MDX 101.6 NA 61.8 82.4 83.0 0.6
BFNP Phelps MDX 102.4 NA 64.1 83.4 84.0 0.6
LEGEND
MDX: Mechanical-draft crossflow
NDX: Natural-draft crossflow PSP: Paradise Steam Plant (TVA)
NDC: Natural-draft counterflow SNP: Sequoyah Nuclear Plant (TVA)

Phelps: With Phelps Fix BFNP; Browns Ferry Nuclear Plant (TVA)
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Figure 10. Comparison of Measured and Computed Cold Water Temperature
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In conclusion the present model is an accurate, efficient, and
inexpensive tool for analyzing the performance of existing towers or predict-

ing the performance of alternate tower designs.
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NOMENCLATURE

a interfacial area per unit volume |[L2/L3]

A vector area (outward normal) [LZ2]

A, interfacial area [LZ2]

B mass transfer driving potential

Cpa constant-pressure specific heat of air [E/mT]
L constant-volume specific heat of air [E/mT]
pr constant-pressure specific heat of water [E/mT]
D air/water vapor diffusion coefficient [L2%/t]

E evaporation [m/t]

f mass fraction of water in an air-water vapor mixture
f 5 mass fraction of water vapor at saturation

G mass flowrate of dry air [m/t]

G" mass flux of air [m/LZ2t]

g gravitational acceleration [L/t2]

9. Newton's constant [mL/Ft?]

H heat transfer coefficient [E/L%tT]

ha enthalpy of moist air (based on the mass of dry air) [E/m]
hg enthalpy of saturated water vapor [E/m]

i vertical (y) index for nodes

| vertical (y) index for cells

j horizontal (x) or radial (r) index for nodes

J horizontal (x) on radial (r) index for cells

K mass transfer coefficient [m/LZ2t]

| 7 mass flowrate of water [m/t]
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Lewis number

number of horizontal (x) or radial (r) cells
number of vertical (y) cells

pressure [F/L?]

ambient pressure [F/L?]

ambient pressure at y=0 [F/L2]

saturation pressure of water [F/L2]
evaporative heat transfer [E/t]

sensible-heat transfer [E/t]

total heat transfer [E/t]

radial coordinate (outward from centerline) [L]
ideal gas constant for dry air [FL/m/T]

ideal gas constant for water vapor [FL/m/T]
adiabatic saturation temperatur [T]

dry-bulb temperature [T]

hot-water temperature [T]

water temperature (local) [T]

wet-bulb temperature [T]

velocity in either the horizontal (x) or radial (-r) direction [L/t]
velocity in the vertical (y) direction [L/t]
velocity vector [L/t]

work rate (power) of fan [E/t]

horizontal coordinate (from exterior to interior) [L]
vertical coordinate (from bottom upward) [L]

lateral coordinate
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Greek
o dimensionless elevation

Y isentropic exponent

Ay vertical dimension of a cell [L]

n etficiency

6 circumferential angle

K thermal conductivity of moist air [E/L/t/T]

A dimensionless pressure drop (in velocity heads)

p - density [m/L3]

Py ambient air density [m/L3]

Pis ambient air density at y=o [m/L23]

Y path function [m/t)

w absolute humidity (mass of water vapor/mass of dry air)
Wy absolute humidity at saturation

Units

[m] = mass

[t] = time

LL] = length

[F] = force

[E] = energy

[T] = temperature
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