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Abstract

The Pitot tube has been the mainstay of flow measurement in cooling towers for decades, but this is not
the only application for velocity probes of this type. Unlike the cooling tower flow measurement
techniques prescribed by the CTI, most other applications of these and similar probes consider the
Reynolds Number, typically at the head of the probe. The correction for Reynolds Number in the derived
correlations for such probesisiterative, but easily implemented and converges quickly. The information
necessary to incorporate a correction for Reynolds Number is often collected (but not used) along with
the other data when the probe is being calibrated. This paper will explore the efficacy of utilizing alocal
Reynolds Number correction with severa Pitot probes and whether or not this actualy reduces the

overall uncertainty of the final flow measurement

I ntroduction

Accurate measurement of water flow is an
essential part of determining the performance of
any heat exchanger, especially a cooling tower
(Section 5.1, CTI 1995 and Section 3.1, CTI,
2000). In fact, the most common parameter used
to express cooling tower performance, capability,
is directly proportional to water flow (Section 6.3,
CTI 2000). While there are several methods
available for measuring water flow, from propeller
meters to Doppler anemometry, the most
commonly accepted and used method is a Pitot
probe traverse of around pipe, and occasionally of
a rectangular duct using the same instrument.
Much effort has been invested in calibrating these
devices under laboratory conditions as close to
field conditions as possible and identifying the
limitations of these devices to stay within
prescribed bounds or add caveats when this is not
practical (Section 3.4, CTI 1995).

Flow Constant of Proportionality

In spite of the fact that a traverse is ailmost always
performed, over which multiple local differential
pressure measurements are taken, implicitly
recognizing the existence of a variable velocity

profile, this calibration process has primarily been
focused on determining a bulk or average
multiplying factor from which to infer total flow.
Averaging these multiple local differentia
pressure measurements, whether weighted for
fractional areas or not, and correlating the results
to values of flow, is an integration process based
on the definition of flow, Equation 1:
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The integration with respect to circumferential
angle, 6, has not been simplified in Equation 1;
because two traverses are often made, 90° apart,
in order to capture asymmetrical effects. The drag
(or pressure) coefficient is a constant of
proportionality that relates the pressure drop and
velocity as in Equation 2.
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This relationship (Equation 2) can be substituted
into Equation 1 in order to obtain an expression
for the flow as a function of the pressure drop and
pressure coefficient, Equation 3:
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This relationship (Equation 3) is traditionally
simplified by defining an effective average
constant of proportionality, C,, as in Equation 4:
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Where V, is the average velocity and p, is the
average density. These are related to the flow by
Equation 5:
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Substituting Equation 5 into Equation 4 and
solving for C, yields Equation 6.
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Substituting Equation 2 into Equation 6 and
assuming constant density yields Equation 7,
relating the loca and average constants of
proportionality:
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The end of a Pitot probe is always some shape
whose flow characteristics have been extensively
studied, such as a cylinder, prism, or wing. The

pressure coefficient for common shapes can be
found in any text on fluid mechanics, typically in
a graph showing the variation with Reynolds
Number as in Figure 1, which is a composite of
severa such graphs.

T T T T T T AR AR AR T TTTTTH

o

e Perpendicu ] ar P\ote\\\
Cylinder
Sphere
F ————Ellipse
- Airfoil
r ——— Parallel Plate

Drag Coefficient, G

[=3
=1

100 1,000 10,000 100,000 1,000,00010,000,000
Reynolds Number, Re

0.001
10

Figure 1. Drag Coefficient for Various Shapes

Not only does the pressure differential, Ap, vary
with radius and circumferential angle, but also the
coefficient, C,, varies. The local velocity aways
varies from some maximum to zero over the
radius; and the Reynolds Number is proportional
to the velocity; therefore, the pressure coefficient
can be expected to vary in a manner similar to the
curves shown in Figure 1. Over some part of these
curves the variation is either negligible or linear;
however, for Reynolds Numbers between 3000
and 500,000 the curves exhibit significant
variability. Use of an effective average constant of
proportionality when some significant part of the
flow is in this range without correcting for
Reynolds Number is likely to be problematic and
may result in greater calibration uncertainty.

The first dip in the cylinder curve in Figure 1
bottoms-out at a Reynolds Number of 2885. For
an 0.625 inch (1.6 cm) diameter probe in water
this corresponds to 0.67 ft/s (0.20 m/s). For the
same probe in air this corresponds to 8.7 ft/s
(2.7 m/s). The most common applications for such



probes in water range in velocity from O to 11 ft/s
(3.3 m/s) and in air from O to 33 ft/s (10 m/s),
putting them in this transitional region of the
significant Reynolds Number dependence of
proportionality nstant. This observation is the
impetus for the analysis presented here.

Cylindrical Probes

The measured pressure coefficient for a right,
circular cylinder in a crossflow, as shown in
Figure 1, can be used along with typical velocity
profiles in order to investigate the magnitude of
the impact on the calculation of flow. For flow in
a pipe with a circular cross-section the only
unknowns become the Reynolds Number at the
bulk velocity and the ratio of the pipe to probe
diameters, B=d/D. Typical turbulent velocity
profiles in a cylindrical pipe are shown in
Figure 2. The Reynolds Number shown in
Figure 2 is for the bulk flow and is based on the
pipe diameter.
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Figure 2. Normalized Velocity Profiles

Use of a power-law velocity profile dates back to
the early work of von Karman in 1930 (as cited
by Zanoun, Durst, and Nagib 2003, who provide
updated coefficients). A very important historical
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publication on this subject is that of Johnson and
Bushnell 1970, which discusses the variation with
Reynolds Number in detail. Some additional
considerations for pipe flow are provided by
Rudman, Blackburn, Graham, and Pullum 2001.

The area under the curves in Figure 2 are not
equal; because the assumed velocity profiles are
three-dimensional and axisymmetric. The volumes
are equa when integrated with the radius, as in
Equation 1. This being the case, it is interesting to
note that the slight bulging of the profiles on the
sides (near r/R=+0.8), while it may seem to
occupy a much smaller area in this two-
dimensional profile view, is of equa significance
to the bulging at the top (r/R<0.5). The integral
(Equation 1) containsthe termsr dr; therefore, the
contribution to the whole of each point along the
velocity profile is proportional to the radius at that
point. This means that variations toward the walls
(r/R>0.5) have a greater contribution than those
closer to the centerline (r/R<0.5).

The cylinder pressure coefficient, C,, from
Figure 1 can be computed at the local Reynolds
Number based on the local velocity curves from
Figure 2 and the probe diameter. Figure 3 shows
the variation in 1/C, for a pipe to probe diameter
ratio of 24 (for instance, a 0.625 inch (1.6 cm)
diameter probe in a 15inch (0.38 m) diameter
pipe). Theinverseis plotted vs. radius; because as
r approaches R at the wall, the velocity goes to
zero, as does the Reynolds Number. As shown in
Figure 2 (which haslog-log scales) C, approaches
infinity as Reynolds Number approaches zero.

The range of bulk Reynolds Number shown in
Figures2 and 3 is consistent with typica
applications where a Pitot probe might be used.
Notice that the 1/C, profiles in Figure 3 have
significantly different shapes. These variations in
shape revea that the local probe Reynolds
Number crosses the region shown in Figure 1
where C, is highly nonlinear. As with the
velocity, when computing an integrated average
pressure coefficient for a probe, the contribution to
the whole is proportional to the radius, so that the
variations toward the walls have a greater
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Figure 3. Inverse Constant of Proportionality
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influence on than those closer to the centerline.
Specificaly, in Figure 3, the flat portion of the
profiles does not account for as much of the total
flow area as the curved portion of the profiles,
and the shape of the curved portion of the profiles
changes with bulk Reynolds Number.
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Figure 4. Effective Coefficient for a Cylinder

The effective average pressure coefficient can be
found by combining Equations 6, Figurel
and Figure 2. This is plotted over a range of
Reynolds Numbers and for various values of the
probe to pipe diameter ratio, B3, in Figure 4.
Figure 4 would seem to indicate that the
calibration coefficient for a Pitot probe (i.e, it's
effective average coefficient of proportionality)
can be expected to vary not only with bulk
Reynolds Number, but also with the diameter of
pipe in which it is used--and this is for an ideal
axisymmetric velocity distribution. Experience
bears this out, which is why so much effort is
devoted to calibrating Pitot probes in large test
facilities and why caveats are added when the
probe is used outside the calibration parameters.

Laboratory Calibration Data

It is not the intention of this analysis to replace
laboratory calibration of Pitot probes, only to
better understand and possibly improve calibration.
One practical benefit of this analysis would be if
it can be used somehow to expand the range of
conditions in which a probe could be used with
comparable uncertainty or even reduce the
uncertainty. Actual laboratory calibration data are
used to evaluate this possibility. Perhaps the most
commonly used probe is the Simplex, which is
shown in Figure 5. A search of the U. S. Patent
Office records indicates that the first mention of
this device was by the Geo. H. Gibson Company
in 1918 (Gibson 1918 in Amir and Peranio 1972).
The devices were manufactured by the Simplex
Vave & Meter Co. and later by Leupold &
Stevens, Inc. of Beaverton, OR.

Laboratory calibration data are considered for 80
cases involving 14 different Simplex probes. Each
consists of 20 differential pressure measurements
traversing the diameter of a round pipe plus the
total flow. Two traverses at 90° are available for
74 of the 80 cases. Taking two traverses at 90° is
acommon practice, especially in the field; because
the velocity profile is probably not symmetric. A
typical pair of velocity profiles for the two



traversesis shown in Figure 6 along with the ideal
power-law profile.
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Figure 5. The Simplex Probe
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Figure 6. Typical Laboratory Velocity Profiles

As shown in Figure 6, in spite of the fact that
these measurements were taken in a laboratory
under carefully controlled conditions in a test
section having a very long straight run of pipe

upstream, the velocity profiles deviate noticeably
from the ideal symmetry. It can also be seen in
this figure that the power-law profile does fit the
data fairly well. These two are typical of the 154
profiles considered.

Equation 7 with C,=1 is traditionaly used to
determine the "Pitot Calibration Coefficient” or
constant of proportionality for a given probe. For
the 80 cases consisting of 154 profiles for 14
Simplex probes, the mean value of C, was
determined to be 0.793 with a 95% confidence
interval of +0.029, a minimum of 0.766, and a
maximum of 0.820. If, however, Equation 7 is
used with a variable C, based on the loca
Reynolds Number and the pressure coefficient for
a cylinder as shown in Figure 1, this "Corrected
Pitot Calibration Coefficient” was found to have a
mean of 0.818 with a 95% confidence interval of
+0.026, a minimum of 0.791, and a maximum of
0.845. This method of incorporating the impact of
Reynolds Number results in a decrease in the ratio
of uncertainty to mean of 19%,; so there is some
advantage to correcting Simplex probe data in this
way. The coefficients are shown in Figure 7 along
with the corresponding 95% confidence interval:

0.83 A
//////A
D8t P
P
P
.83 > AA'@ .
Q A A AAA
r A By
§O.82* b A& 1
A
1 by b B
st Bha -
L AL
g A Ag o
080 ,’/ A A |
A
/’/ A
Al | | | | |

"% om0 0m 0m 08 08 0.8

Uncorrected Coefficient

Figure 7. Laboratory Pitot Coefficients



Alternate Probe Shapes

Asindicated before, the typical range of operation
for Simplex probes spans the portion of the
pressure coefficient for a cylinder which exhibits
pronounced changes. The pronounced changes
were shown in Figure 1 and the result of using the
pressure coefficient in Equation 7 was shown in
Figure 4. Some validity to this calculation was
shown by a reduction in the variability of
laboratory calibration coefficients. With these
considerations in mind, it seems reasonable to use
the pressure coefficient for other shapes in these
same calculations in order to get some indication
as to the relative appropriateness of these shapes
for use as a probe design. An ideal shape for a
probe would be one that has a constant pressure
coefficient, independent of Reynolds Number, or
a flat line on Figurel. A set of curves like
Figure 4 can be created for each of the shapes in
Figure 1.
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Figure 9. Effective Coefficient for a Plate
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Figure 10. Effective Coefficient for an Ellipse
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Figure 11. Effective Coefficient for a Disk
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Figure 12. Effective Coefficient for an Airfoil

Figures 4 and 8 through 12 show that those shapes
having the most complexly varying pressure
coefficients (cylinder, sphere, and ellipse) or the
most variable in magnitude (plate) would result in
the most variable effective average coefficient of
proportionality, making these the least attractive
choices. The one having the least variable pressure
coefficient (disk) produces the least variable
effective average coefficient of proportionality,
making it the most attractive choice. The airfail
shape might also be an attractive choice, provided
the bulk Reynolds Number is not too large and the
probe to pipe diameter is not too small.

Summary

In summary, the impact of Reynolds Number and
probe to pipe diameter ratio has been discussed
for Pitot probes, with particular focus on the
Simplex design. The Simplex design has been
analyzed as a cylinder in a crossflow. Laboratory
calibration data have been presented and a
Reynolds Number correction for the cylindrical
shape applied. This correction reduced the ratio of
95% confidence interval to mean value of the
constant of proportionality by 19%, indicating
some advantage to this analysis. Effective average
coefficients of proportionality were computed for
a cylinder, sphere, dlipse, plate, disk, and airfail,
based on the respective pressure coefficients.
Comparison of the effective average coefficients
of proportionality indicate that the cylinder,
sphere, ellipse, and plate shapes would not be
attractive choices for a probe; whereas, the disk
and airfoil would be attractive choices.

Conclusions

The Simplex probe, being cylindrical in shape, can
be expected to exhibit a calibration dependence on
Reynolds Number and probe to pipe diameter
ratio. This dependence can be accounted for to
some extent by utilizing the pressure coefficient



for a cylinder in a crossflow. The confidence
interval in the coefficient of proportionality for the
Simplex probe can be reduced by incorporating
the dependence of the pressure coefficient with
Reynolds Number in the calibration data. A
different probe shape, possibly a disk or €lipse,
should be more attractive than the cylinder.

Recommendations

This same analysis should be applied to laboratory
calibration data for probes other than the Simplex
and a comparison made. Severa different shaped
probes should be fabricated and tested. As
roughness has been shown in some cases to
stabilize the onset of turbulence and separation,
artificially roughened probes should also be tested.

Symbols

Co v vviinn pressure coefficient [unitless]
d ... probe diameter [l]
D .. pipe diameter [l]
O v oo acceleration of gravity [1/t7]
Oc v vveeeenns mass conversion factor [ml/Ft?]
[0 T pressure [F/I?]
Q. flow [I3/1]
Mo distance from centerline [I]
R . radius [1]
Vo velocity [IN]
Greek

B .... ratio of probe to pipe diameter [unitless]
0 ........... circumferential angle [radiang]
D density [m/I¥]
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