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ABSTRACT 

 

Applications of a hybrid derivative-free algorithm for locating 

extrema of nonlinear functions of several variables based on 

Broyden's method is presented in which the problems of starting 

values and extraneous entrapment are addressed.  The principal 

intended application of the algorithm is to find solutions to 

simultaneous nonlinear equations.  The main objective of the 

algorithm is to minimize the number of function evaluations for 

problems where the equations are computationally intensive or 

partial derivatives cannot be determined analytically. Four 

examples drawn from diverse fields are given for illustration. 

Comparisons are made to the Newton-Raphson, conjugate-

gradient, and steepest-descent methods. 

 

NOMENCLATURE 

 

A=rectangular matrix having M columns and N rows 

B=column matrix having M elements 

F=a function of several variables 

M=the number of residuals (M≥≥≥≥N) 

N=the number of unknowns 

R=residual column matrix having M elements 

X=unknown column matrix having N elements 

 

superscript 

T=matrix transpose 

 

subscripts 

N=new or current value 

O=old or previous value 

 

INTRODUCTION 

 

Many practical problems can be cast into the form of a search for 

extrema of a function of several variables.  A common function is 

the sum of squared residuals, in which case the extrema of 

interest are the roots of simultaneous equations.  Methods abound 

which require knowledge of the partial derivatives.  Many of 

these derivative-based methods can be adapted by using finite 

differences to solve problems where the partial derivatives cannot 

be analytically determined.  Such implementations are 

impractical when the function is computationally intensive. 

 

Derivative-based methods such as the Newton-Raphson discard 

at each step all information previously learned about the behavior 

of the function except the current location.  Even the Conjugate-

Gradient method when applied to nonlinear problems may only 

preserve one previous direction of search.  When the function 

evaluation is computationally intensive it is essential that as much 

information as possible about the behavior of the function 

learned from previous evaluations be preserved and utilized. 

 

Broyden's method is very attractive when considered from this 

perspective.  It does not require knowledge of the partial 

derivatives, nor does it attempt to compute them directly.  

Furthermore, Broyden's method preserves all of the information 

learned about the behavior of the function for the last N+1 steps 

where N is the number of unknowns. 

 

Four enhancements to Broyden's method were made to arrive at 

the present algorithm: a method for selecting starting values, step 

length control, hybrid search algorithm, and a method for 

escaping from extraneous entrapment. 

 

THE BASIC METHOD 

 

Given a set of N unknowns represented by the column matrix X 

and a corresponding set of M residuals represented by the column 

matrix R, the least-squares function would be F=R
T
R.  The 

extrema of F occur at the locations where ∂∂∂∂F/∂∂∂∂X=0.  If the 

residuals, R, were linear functions of the unknowns, X, then the 

function, F, would be quadratic and its contours would plot as 

ellipsoids.  This linear case could be described by Equations 1 

and 2 

 

 

 

where A is a rectangular matrix having M columns and N rows 

and B is a column matrix having M elements. 

 

Broyden (1969) reasoned that A and B should be selected such 

that exact agreement would be preserved for the previous N+1 

steps.  Assuming that no two of the previous N+1 Xs are the 

same, there should be a unique solution to the resulting M(N+1) 

equations for the elements of A and B. Ignoring for the moment 

how this sequence of Xs might be obtained, the matrices A and B 

can be sequentially updated using the following algorithm 
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where the subscripts N and O refer to new and old respectively--

or the current step and the previous one.  Equations 3 and 4 can 

be verified by substitution into Equation 1 with the new and old 

subscripts added.  If A and B are initialized to zero and N+1 

unique starting values of X are selected, then after N+1 function 

evaluations and updates, matrices A and B will be uniquely 

defined and the search for a solution could proceed. 

 

The interesting property of Equation 3 which led Broyden to this 

selection is that the change in A is only in the direction of the last 

step in X.  That is, the only information about the behavior of the 

function which is added to A at each step is its variation along the 

current search direction.  All of the information about the 

function in the N-1 directions orthogonal to the current search 

direction remains intact; thus, it is a rank-one update method. 

 

Broyden used this algorithm for obtaining and updating matrices 

A and B, along with Newton's method to search for the extrema.  

Thus in its original form, Broyden's is a quasi-Newton method 

(Morè and Sorensen (1984) discuss Newton and quasi-Newton 

methods in some detail.).  The following calculus can be applied 

to the matrices in order to illustrate this procedure. 

 

 

Matrix A contains the partial derivatives of the residuals, R, with 

respect to the unknowns, X.  Thus matrix A is the Jacobian of R 

with respect to X. 

 

As indicated by Equation 6, the gradient of the function lies 

along the direction AR; therefore, most any gradient search 

method could be implemented and updated using Broyden's 

method for determining the Jacobian.  Ortega and Rheinboldt 

(1970) discuss on an analytical level a number of methods which 

could be applied at this point.  Actual selection of a practical 

method which will produce satisfactory stable results for a wide 

range of problems is quite another matter. 

 

THE MODIFIED METHOD 

 

Nonlinear simultaneous equations may have no solution, one 

solution, or many solutions.  The most helpful physical analogy is 

that of a relief map of the Earth's surface where the unknowns are 

latitude and longitude and the function is the elevation with 

respect to mean sea level.  No conceivable practical method 

could hope to locate Mt. Everest or the Marianas Trench 

regardless of the starting values.  While it is reasonable to search 

for local extrema, it is fortuitous to locate the global extremum--

assuming one does exist.  Given this analogy it is understandable 

that no practical algorithm can be expected to locate even a local 

extremum in every case.  Fletcher (1987) discusses these and 

other problems related to locating extrema in more detail. 

 

Selection of Starting Values 

 

This geographical analogy illustrates the necessity of limiting the 

region to be searched for extrema.  In the present algorithm, a 

minimum and maximum value for each element in X must be 

supplied.  This not only provides an extent to the range of X, but 

it also serves as an indication of the scale.  Any change in X 

which is on the order of the machine precision when compared to 

the range of X is considered negligible.  One logical choice for 

the N+1 starting values of X would be the center plus the N 

evenly distributed surrounding values inside the hypercube 

defined by the specified range of X. 

 

If the function at the central point is greater than at the 

surrounding points, then the first iteration would direct the search 

outside of the range of X.  If this occurs the range is bisected such 

that the new center point is mid way between the previous center 

and the surrounding point corresponding to the least value of the 

function.  If this bisection is unsuccessful after sufficient attempts 

so as to diminish the subrange of any element of X to the 

previously determined negligible level, the search is abandoned. 

 

Steplength Control 

 

The unmodified method often results in unstable iterations.  Not 

only is it necessary to confine X to the specified range, it is also 

necessary to damp the iteration or, as in this case, apply a 

steplength control algorithm.  Ortega and Rheinboldt discuss 

several steplength algorithms. The parabola method defined by 

the current location, one close point, and the next step prescribed 

by the unmodified method has proven to be as successful as any 

tested.  Using the unmodified point as an outer limit on the 

steplength arises from the observation that the unmodified 

method has a strong tendency to overshoot. 

 

Hybrid Search Algorithm 

 

Because Broyden's is basically a quasi-Newton method, the 

search proceeds in much the same direction as with Newton-

Raphson (NR).  In cases where the NR method would fail to 

locate an extremum, most likely Broyden would also.  Broyden's 

method can also be viewed as a means by which to obtain the 

Jacobian (matrix A).  If the Newton iteration is not successful, 

the Jacobian can be used to implement other methods.  The 

method of steepest descent (SD) is more robust, but converges 

less rapidly than NR.  When the NR iteration fails to result in a 

reduction of the residual, the direction of steepest descent is 

searched. 

 

In the present algorithm, the Conjugate-Gradient (CG) method 

with the restart procedure recommended by Powell (1977) is also 

used to supplement the NR/SD iteration.  The only information 

added to the Jacobian by Broyden's update is along the search 

direction.  Information about the character of nonlinear functions 
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in directions orthogonal to the search direction can be essential to 

locating extrema.  The CG method provides a systematic 

procedure for searching other directions.  In the present 

algorithm, the NR, SD, and CG methods are used alternately as 

each ceases to provide continual reduction of the residual. 

 

Escape from Extraneous Entrapment 

 

If N directions have been searched without further improvement, 

then either a local extremum has been found or extraneous 

entrapment has occurred.  Whether the current location is a local 

extremum or a nuisance of finite-precision arithmetic can be 

partially determined by examining the history of matrix A.  For 

nonlinear problems the character of A can change substantially as 

the search proceeds. 

 

The unmodified Broyden update to A replaces the information 

along the direction of the current step--thus discarding the 

previous information along this direction.  If an old copy of A is 

retained along with the new copy and the search direction 

indicated by the old A is away from that indicated by the new A 

(viz. the dot product of the column matrices is less than or equal 

to zero), then the iteration may have skipped over an inflection 

point.  In this case a search is conducted along the direction 

connecting these two provisional new values of X. 

 

Extraneous entrapment can sometimes be corrected by arbitrarily 

perturbing the solution away from the current location to see if it 

will return to the same point.  After this perturbation has been 

attempted without success in N directions the procedure is 

abandoned. 

 

Extension to Least-Squares 

 

In the case where M>N, Equation 7 must be pre-multiplied by A. 

 The simultaneous nonlinear equations are then solved in the 

least-squares sense.  For most problems the stability of the 

method also improves when this multiplication is performed even 

in the case of M=N.  Therefore, in the present algorithm it is done 

regardless of the values of N and M. 

 

COMPARISON TO OTHER METHODS 

 

The present derivative-free enhanced Broyden (EB) method was 

compared to the Newton-Raphson (NR) and Conjugate-Gradient 

(CG) methods.  The results are listed in Table 1.  All three 

methods have step-size control and for the test cases were 

required to obtain essentially the same solution.  All three 

methods were given the same starting values (initial guess) so 

that there was no advantage of one over the other in these 

respects. 

 

Table 1 lists the number of variables (independent unknowns and 

dependent residuals), the number of function evaluations, and 

relative performance.  The relative performance is the number of 

CPU-seconds required for the NR divided by the number required 

for the particular method (thus, NR will always have a relative 

performance of 1.0). 

 

Test Case 1 

 

The first test case is a nonlinear constrained curve fitting 

problem. The best fitting single branch of a hyperbola was sought 

which would not only agree with the data (in this case 

experimental film boiling droplet area as a function of time), but 

would also have asymptotic characteristics conforming to the 

observed phenomena.  The resulting curve fit must have one and 

only one root.  The root must lie outside the range of the data and 

the derivative must be infinite at that point. The problem is 

nonlinear because of the constraints and the form (a rational 

polynomial).  The partial derivatives of the residual cannot be 

determined analytically as these result in yet another set of 

simultaneous nonlinear equations.  This test case was selected as 

being typical from among a set of 125. 

 

Test Case 2 

 

The second test case is similar to a nonlinear unconstrained curve 

fitting problem.  The values of hydraulic conductivity and 

storativity (groundwater analogs of electrical conductance and 

capacitance) were sought which would best characterize a 

measured field response.  A field test was conducted by pumping 

water from a well and measuring the change in the water table in 

a nearby well.  An analytical expression for the ideal response of 

an aquifer contains these two unknown parameters which must 

be selected so as to best agree with the measured response.  This 

problem is nonlinear, however the partial derivatives of the 

residual can be computed analytically (see note * in the table).  

This test case was selected as being typical from among a set of 

33. 

 

Test Case 3 

 

The third test case is the determination of four calibration factors 

(mass transfer and pressure drop coefficients characterizing a 

particular type of plastic media) which are needed to run a large 

finite-integral code (numerical model of a cooling tower).  Forty-

nine sets of field data were collected for this plastic media.  What 

was sought are the calibration factors which when input to the 

model will best reproduce the measured results.  The finite-

integral code itself was repeatedly run to provide the residuals.  

Needless to say, this was a very computationally intensive 

process--one in which minimizing the number of function 

evaluations was crucial.  This test case, which is actually a type 

of inverse mass transfer problem, was selected as being typical 

from among a set of 6. 
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Test Case 4 

 

The fourth test case is the determination of 4 phase lags and 4 

corresponding weights which would best characterize the 

transient response of a dammed reservoir.  A linear model was 

sought for the cross-sectionally averaged transient flow at a 

specific location (adjacent to a large power plant) within a 

reservoir bounded by two dams which are used for peaking (i.e.,  

they discharge water only during times of peak electrical 

demand).  This linear model was to become part of a larger linear 

systems optimization code used for long-range planning and 

resource management.  An existing dynamic fluid flow model 

was used along with historical dam operations to produce a target 

data set.  This test case was selected as being typical from among 

a set of 4. 

 

DISCUSSION 

 

The focus of these four test cases is not on many variables, but on 

non-analytically differentiable residuals and lengthy function 

evaluations.  In each case there is some physical phenomenon 

which provides the basis for the residuals.  Because these test 

cases are based on physical phenomena, the approximate bounds 

on the solution are also known.  In each case lengthy graphical or 

cumbersome numerical techniques exist for finding extrema.  The 

advantages to using the present algorithm in these cases are 

convenience and speed. 

 

In the first test case (fitting a hyperbola with constraints and later 

taking its derivative) has been done for years using hand-drawn 

curves and a drafting protractor.  The second test case 

(determining hydraulic conductance and capacitance) has also 

been done for years by graphical means and more recently by 

asymptotic extension to separate the coupled influence of the 

unknowns.  The third test case (determining calibration factors 

for mass transfer and pressure drop) has typically been done by 

assuming half of the unknowns to be the same as a similar media 

and computing the others by trial-and-error. 

 

For these test cases the average performance of the EB method is 

about 4 times the NR and CG methods.  As mentioned 

previously, these are not isolated examples, but working 

problems from a variety of fields which were the impetus for 

developing the method.  The EB method utilizes the best features 

of the NR, CG, and SD methods along with avoiding direct 

calculation of the Jacobian.  The relative advantage of the EB 

method was most dramatic for Test Case 3 where the difference 

in runtime was a matter of days (on a 33MHz-80386/7 machine). 

 

A two-variable problem is best suited to illustrate the searching 

procedure graphically.  Figures 1 through 3 show the contours of 

the function in Test Case 2 and the first few steps in the search 

path for the NR, CG, and EB methods respectively.  The Z-axis or 

the contours is percent total residual (in 20% intervals).  The dark 

(dense dot) region is close to the extremum and the light (sparse 

dot) region is far from the extremum.  This graphical format was 

selected in order to give a bulls-eye appearance. 

In this case the CG essentially follows the gradient inward to the 

center of the bulls-eye (see the dark path line in Figure 2).  The 

CG path is almost perpendicular to the contours as it crosses each 

one. The SD path if it were shown would differ little from the 

CG.  The NR and EB paths differ markedly from the CG 

(compare the dark path lines in Figures 1 and 3 to Figure 2).  The 

NR and EB methods reach the vicinity of the extremum (i.e., 

penetrate the darkest inner contour) in significantly fewer steps 

than does the CG method. 

 

The hybrid implementation of the present method can be seen by 

comparing the second step in the NR and EB paths.  The line 

connecting the second and third points on the NR line (Figure 1) 

is almost parallel to the contour next to it (i.e., this step is almost 

perpendicular to the gradient).  The line connecting the second 

and third points on the EB path (Figure 3) is almost perpendicular 

to the contour (i.e., almost in line with the gradient at the point 

where it crosses the inner contour). This illustrates how the EB 

method checks the search direction corresponding to all three 

methods (NR, CG, and SD) to see which is more advantageous at 

a particular location. 

 

CONCLUSIONS 

 

Broyden's derivative-free method for solving nonlinear 

simultaneous equations has been presented along with four 

enhancements.  These enhancements include: a method for 

selecting starting values, step length control, hybrid search 

algorithm, and a method for escaping from extraneous 

entrapment.  A significant performance improvement over the 

Newton-Raphson and Conjugate-Gradient methods is shown for 

four test cases taken from varied fields.  Part of this performance 

improvement is a consequence of the derivative-free method.  

The hybrid search algorithm used in this enhanced Broyden 

method further improves the performance by utilizing the 

strengths of three other methods (the Newton-Raphson, 

Conjugate-Gradient, and Steepest-Descent). 
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