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ABSTRACT

A comparison is made of seventy-five cases
representing seven major methods used for numerical
integration as to their respective accuracy, speed, cost-
effectiveness, and stability. Gauss quadrature is shown
to be by far the preferable method for computing
cooling tower demand curves.

NOMENCLATURE

the interfacial area per unit volume as in
Equation 3

constant pressure specific heat of water

o
Il

c W =

Fﬁ‘(} = a general function of X

h = enthalpy of air

K = mass transfer coefficient

L = water flux

N = number of quadrature points as in Equation 1
Ty = water temperature

V. = volume

W, = quadrature weights as in Equation 2

X = ageneral independent variable

X, = quadrature abscissas as in Equation 2
Subscripts

a = the lower limit of integration as in Equation 1
A = referenced to air

b = the upper limit of integration as in Equation 1
W = referenced to water

INTRODUCTION

Many engineering problems, and specifically the
computing of cooling tower demand curves, require the
solution of integral equations. Those which are not
analytically integrable require numerical means to
resolve. The computation of cooling tower demand
curves requires the solution of integral equations such
as described by Merkel which involve thermodynamic
properties and are not analytically integrable.

Several numerical methods have been applied
to this problem. Merkel used the 4-point Chebyshev for
its simplicity and ease in hand calculations. LeFevre
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has pointed out several inaccuracies in Merkel's
method, in particular, the use of the 4-point Chebyshev
integration. With the introduction of computers, other
more accurate methods of integration can be applied as
LeFevre suggests. Personal computers make it possible
for the enginesr to generate custom demand curves.
Generating these demand curves requires accurate and
timely solution of integral equations.

BACKGROUND

Numerical integration is often called quadrature
because of the geometric analogy of finding the area
under a curve. Some authors use the terms numerical
integration and quadrature interchangeably while others
make a distinction in their use as to whether the
function to be integrated is tabular (such as
experimental data) or analytical (such as SIN(X))
(Hildebrand p. 381).

Discretization

The basic assumption of numerical integration
is that the integral can be approximated by the
following discrete formulation (Hildebrand p. 385}):

b
[FX)ax = (b—a)i W, F(X) (1)

where W, are coefficients called weights, X are specif_ic
locations on X called abscissas, and N is the number of
terms or points.

Some discretizations like Equation 1 also use
derivatives of F(X). Because of the involvement of
thermodynamic properties in the cooling tower demand
integral, using derivatives of F(X) in Equation 1 is not
practical. Therefore, the methods compared here
include only those methods which do not require the
derivatives of F(X].

Weights and Abscissas

Among the methods described by Equation 1,
there is the further distinction as to whether the



weights, W, and abscissas, X|, are constrained or free.
In addition, some criterion is imposed in order to
determine either the weights, the abscissas, or both.
The two most common criteria are that the method
conform to some geometrical analog (e.g., the
trapezoidal rule, Hildebrand p. 95) or that it exactly
integrate some analytical function or family of functions
{e.g., Newton-Cotes will exactly integrate any
polynomial up to some order depending on the number
of points, Hildebrand p. 93).

Convergence and Stability

A method is said to converge if the series
formed by integrations of successively higher order

converges as the number of points, N—=00., In a
practical sense, a method is said to converge if results
obtained by successively higher orders asymptotically
approaches a constant value. Just because a method
converges does not insure that it will converge to the
correct answer--that involves the additional
consideration of accuracy.

A minimal condition for stability of a method
based on Equation 1 is that the weights be positive,
W,> 0 (Hildebrand p. 95). The sum of the weights
must be equal to 1, ZW,= 1, else the method would not
even integrate the case where F(X) = constant correctly.
Therefore, if any of the weights are negative, the sum
of the absolute value of the weights will exceed 1. If
this condition exists, it can be shown that the method
will not converge (Hildebrand, p. 96).

Degrees of Freedom

The extent to which a particular method can
meet a specific criterion {(such as exactly integrating
any polynomial up to some order) is limited by the
number of degrees of freedom that it has. Or put
another way, a method is limited by the number of
parameters that can be adjusted in order to meet the
criterion.

If the abscissas, X, are selected beforehand so
as to take on convenient values (equally-spaced
intervals yields the Newton-Cotes method), the number
of degrees of freedom is limited to N (W, through W,).
If the weights, W,, are selected beforehand (requiring
that they all be equal yields the Chebyshev method),
the number of degrees of freedom is limited to N (X,
through X,). If no such constraint is imposed and
optimal values are selected for W, and X, (this yields the
Gaussian method), the number of degrees of freedom is
limited to 2N (W, through W, and X, through X,,).

METHODS COMPARED

Seven methods were selected for comparison:
trapezoidal, Simpson, Newton-Cotes, Romberg,
Chebyshev, Lobatto, Gauss, and composite or
subdivided Gauss. Other more obscure methods such
as Radau, Hermite, Laguerre, Jacobi, and Filon are
covered by Hildebrand and Abramowitz and Stegun.
Inclusion of these would not add to this comparison as
these methods apply to special cases not pertinent to
the integral equation being considered.

The Trapezoidal Rule

The trapezoidal rule is based on the geometrical
interpretation of integration as illustrated in Figure 1. It
seems intuitive that if enough points are taken, the area
of the trapezoids will sum to the total area. It can also
be seen from the figure that if the function being
integrated is consistently cupped upward or downward
over the interval, there is always a small error. Thus it
will require an infinite number of points to obtain the
exact answer. It also follows logically that for any
function other than a straight line, there is no guarantee
that the trapezoidal rule will ever produce the exact
answer in a finite number of points.
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Figure 1. Trapezoidal Rule

Simpson’s Method

Simpson’s method is very similar to the
trapezoidal rule. The difference is that a parabola rather
than a straight line is drawn between the points. This
is actually quite an improvement; but the same problem
exists, albeit at a higher order.



Newton-Cotes Methods

Unlike the trapezoidal and Simpson methods,
the Newton-Cotes methods require a different set of
weights depending on the number of points. These are
found through a complicated process described by
Hildebrand and listed in Abramowitz and Stegun. As
indicated previously, the Newton-Cotes weights are
found by constraining the abscissas, X, to be at
equally-spaced intervals and requiring that they exactly
integrate any polynomial of degree less than N. It is
important to note that not all of the weights are positive
for N=9 and N> 70. The sum of the absolute value of

the weights becomes unbounded as N—=o2. The
Newton-Cotes method is unstable for these cases and,
of course, does not converge.

Romberg Integration

Romberg devised a hybrid method whereby
Richardson’s extrapolation is used to predict the
asymptotic result of successively smaller interval
trapezoidal integration {(Hildebrand p. 99). Richardson’s
extrapolation could also be used in conjunction with
other integration methods; however, these would not
be as easily implemented as the trapezoidal rule.
Romberg noticed when applying the trapezoidal rule,
that the results from the previous integral can be reused
to compute the next integral in succession, effectively
reducing the work by a factor of two. The Romberg
method has the further advantage of providing an
estimate of the error as part of the Richardson’s
extrapolation.

Chebyshev Quadrature

As indicated previously, the Chebyshev method
arises from constraining the weights, W, to be equal
{this assures stability, unlike Newton-Cotes),and
seeking the abscissas, X|, such that the exact integral
will be given for any polynomial of order less than N,
A different set of abscissas are needed for each value
of N. These are found through a complicated process
described by Hildebrand and listed in Abramowitz and
Stegun.

Lobatto Quadrature

Lobatto quadrature arises from constraining
only two of the abscissas, one at each end point {a and
b in Equation 1, which can easily be normalized to -1
and 1). The remaining abscissas and all of the weights
are determined optimally such that the exact integral
will be given for any polynomial of order less than 2N-2,

A different set of abscissas and weights are needed for
each value of N. These are found through a
complicated process described by Hildebrand and listed
in Abramowitz and Stegun.

Gauss Quadrature

As indicated previously, the Gauss method
arises from constraining neither the abscissas or
weights. These are found by requiring that the exact
integral will be given for any polynomial of order less
than 2N. A different set of abscissas and weights are
needed for each value of N. These are found through a
complicated process described by Hildebrand and listed
in Abramowitz and Stegun. By not constraining the
weights to be equal (as with the Chebyshev method)
there is no assurance from the outset that all of the
weights will be positive. As it turns out, however, they
are. Furthermore, the method is stable, convergent,
and accurate.

Composite Gauss Quadrature

Composite or subdivided methods are
frequently used to integrate to convergence by
subdividing until the change in the result for successive
subdivisions is less than some tolerance. In this sense
these are similar to Romberg’s method. Composite
methods have also been used as a substitute for higher
order methods (i.e., 5-point Gauss quadrature taken
over two half intervals as a substitute for 10-point
taken over the entire interval). The former use is
certainly legitimate; whereas the latter is questionable.
These methods are included in the comparison in order
to illustrate their diminishing return.

THE TEST CASE

The integral equation from which counterflow
cooling tower demand curves are generated was
introduced by Merkel:

P (2
(h w_hA)

where K is the mass transfer coefficient, a is the
interfacial surface area per unit volume, V is the
volume, L is the water flux, C,,, is the constant pressure
specific heat of the water, hy, is the enthalpy of air at
the conditions of the air water interface, h, is the

enthalpy of the air, and T, is the water temperature.

Important improvements in the accuracy of this
equation have been made by others (e.g., LeFevre).



However, the mathematical functionality of the
improved forms remain basically the same.

The graphical representation of this integral
equation is illustrated in Figure 2. If the term (hy-h,)
were in the numerator of Equation 2 instead of the
denominator, the integral would simply be the area
between the two process lines {or the shaded area in
the figure). If this were the case, the integral would be
analogous to F(X]dX.
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Figure 2. Process Lines

Because the term (hy-h,) is in the denominator,
the integration is more complicated. The integral is
more analogous to dX/F(X). At this point an electrical
analogy is often helpful. The mass transfer coefficient
is analogous to a conductance. Each infinitesimal
element of the interacting volume, dV, along the
process line has a particular conductance. These
conductances must be added in series. If any one is
zero, then the total is zero. Put another way, if there is
a break in the circuit (conductance equal to zero), then
the entire circuit is broken regardless of the other parts.

A near zero conductance is called a pinch
because it shows up graphically as a point where the
two process lines come very close. The Second Law of
Thermodynamics states that the two lines can never
touch or cross (provided that the only processes
occurring are 2-species heat and mass transfer). A
pinch is illustrated in Figure 3. A pinch situation is the
most difficult to accurately integrate numerically.
Therefore, the test case will focus on this aspect.

Units are unimportant in considering methods
for numerical integration as these can be normalized by

PINCH
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Figure 3. Pinch Point

taking a constant outside of the integral. The simplest
analog to the pinch illustrated in Figure 3 is the integral
of 1/X. The degree of pinch is the maximum distance
between the two process lines divided by the minimum.
This is typically no more than 3. The most extreme
case for which an actual tower design was found
slightly exceeded 7. A value of 10 was selected for the
test case in order to a have sufficiently stringent test.
The test integral is given by Equation 3.

10d)(
aX _ (3)
[ < = In(10)

Which is the same as the integral from 0.1 to 1 or from
10 to 100, etc.

RESULTS

The results of the comparison are given in
Tables 1 and 2. The only difference between the two
is the order in which the entries are sorted. The first
column gives the name of the method and the number
of points. The second is the resulting approximation to
the integral (Equation 2). The third column is the
difference between this and the exact solution
(Equation 3}. The fourth column is the computer time
in seconds (only the relative time required for the
various methods is important). The fifth and last
column is the number of decimal digits of accuracy
achieved per second of computations (again, only the
relative measure is important).



DISCUSSION

The accuracy of the various methods (at least
for this problem) can be seen in column three of the
tables. There is a significant disparity in the accuracy
of the various methods (a range of 16 orders of
magnitude or 16 digits). For the most part, methods
using more points are more accurate than those using
fewer points; but there are examples where the same
number of points achieves 12 digit different accuracy
(100-point trapezoidal vs. 96-point Gauss).

The accuracy of the Chebyshev method
surpasses that of the Newton-Cotes for the same
number of points even though both methods have the
same number of degrees of freedom. The accuracy of
the Chebyshev, Lobatto, and Gauss methods (all having
optimally-spaced abscissas) significantly exceeds that
of the trapezoidal, Simpson, and Newton-Cotes (all
having equally-spaced abscissas). These two
comparisons illustrate the general rule that freedom in
the abscissas is typically more important than freedom
in the weights. They also illustrate the general rule that
accuracy greatly increases with increasing degrees of
freedom.

The accuracy of the trapezoidal rule compares
quite poorly with all of the other methods and is of little
practical value. Simpson’'s Rule is a considerable
improvement over the trapezoidal rule, but also
compares poorly with other methods. Newton-Cotes is
useful when restricted to fixed points, provided limited
accuracy is sufficient and no more than 9 or 10 points
are involved. The Romberg method is easily
programmed and highly accurate. The Chebyshev
method is of questionable utility when compared to
Gauss.

All of the methods compared are stable and
converge except the Newton-Cotes and Romberg.
Newton-Cotes diverges for this example if more than 40
points are used (this can happen with fewer points for
a different integral). The reason for this divergence has
already been covered. The Romberg method will also
diverge. For this case the error is reduced up to 1025
points and then increases. Although it is of
questionable practical concern (16385+ point
integration is certainly excessive), because the Romberg
method employs Richardson's extrapolation, the
differences computed using limited precision arithmetic
will eventually cause the process to diverge.

It can be seen from the last column in the
tables that there is an optimal number of points from
the perspective of digits of accuracy per second of
computer time for each method (except the composite
Gauss). These are approximately 10, 10, 9, 9, 6, 10,
and 20-points respectively for the trapezoidal, Simpson,

Newton-Cotes, Romberg, Chebyshev, Lobatto, and
Gauss methods respectively. The Gauss method has
the largest number of points at the optimum. This is
because it also has the largest number of degrees of
freedom per point.

The accuracy of the methods at this optimum
varies considerably (10 digits}. What this optimum
means is that there is a diminishing return for using any
more or less points. If the accuracy at the optimum is
not sufficient for the application, then the method is not
cost-effective.

The optimum return of the methods also varies
significantly. These are approximately 6, 10, 25, 25,
12, 31, 47, and 56 digits per second for the
trapezoidal, Simpson, Newton-Cotes, Romberg,
Chebyshev, Lobatto, and Gauss methods respectively.
The return for the Gauss is considerably higher than for
any of the others. Again, this is a result of the number
of degrees of freedom per point.

Note that the composite Gauss has a
diminishing return for all cases (i.e., no maximum is
exhibited). Also note that the accuracy of the 2*5-
point Gauss is 2.6 digits less than 10-point Gauss.
Using a composite rule as a substitute for a higher order
method is never cost-effective and should only be used
if the higher order method is unstable (Hildebrand p.
95).

The most significant results from a practical
standpoint are revealed by the sorting in Table 2, where
the methods are arranged in diminishing return. The
top of the table is dominated by optimally-spaced
abscissa methods. These are the Gauss, Lobatto, and
Chebyshev, in that order. This is also the order of
decreasing number of degrees of freedom for the same
number of points (recall that the Lobatto fixed the end
points and Chebyshev fixed the weights).

It is also interesting to rank the methods as to
their first occurrence in Table 2. In first place is 20-
point Gauss, followed by 10-point Lobatto in ninth, 6-
point Chebyshav 17th, and 11-point Newton-Cotes in
23rd place. These are followed at a considerable
distance by S-point Romberg in 43rd, 5-point Simpson
47th, and 10-point trapezoidal in 55th place.

While the Romberg is the second most accurate
method, it is third from the last in cost-effectiveness.
This is because it is based on the trapezoidal rule with
Richardson’s extrapolation to improve the accuracy.
Still the number of degrees of freedom per point is small
when compared to Gauss. The advantage to the
Romberg method is the error estimation, not its
computational efficiency.



CONCLUSIONS

For this application Gauss quadrature is
significantly more accurate than any other method
given the same number of points. The cost-
effectiveness of the 20-point Gauss method is
considerably greater than any other method. The
accuracy of 10-point Gauss or Lobatto quadrature is
probably sufficient for computing demand curves with
negligible loss of cost-effectiveness. Lobatto
quadrature has the advantage of including the process
end-points. The Romberg method is by far the most
accurate of those having equally-spaced points. Only
diminishing return is seen for the composite or
subdivided Gauss method.

SUMMARY

A comparison was made of seven major
methods used for numerical integration. Based on
accuracy, stability, and cost-effectiveness, Gauss or
Lobatto quadrature was found to be by far the
preferable methods for computing cooling tower
demand curves. The 20-point Gauss method had the
highest cost-effectiveness. The accuracy of 10-point
Gauss or Lobatto quadrature is probably sufficient and
is almost as cost-effective while requiring only half of
the computational time.
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METHOD

exact=ln(10)

3-point trapezoidal
5-point trapezoidal
10-point trapezoidal
20-point trapezoidal
100-point trapezoida
1000-point trapezoid
10000-point trapezoi
3-point Simpsen
5-point Simpson
10-point Simpson
20-point Simpson
100-point Simpson
1000-point Simpson
10000-point Simpson
4L-point Newton-Cotes
5-point Newton-Cotes
6-point Newton-Cotes
7T-point Newton-Cotes
8-point Newton-Cotes
9-point Newtcn-Cotes
10-point Newton-Cote
11-point Newton-Cote
12-point Newton-Cote
16-point Newton-Cote
20-point Newton-Cote
30-point Newton-Cote
40-point Newton-Cote
50-point Newton-Cote
60-point Newton-Cote
3-point Romberg
5-point Romberg
9-point Romberg
17-point Romberg
33-point Romberg
65-point Romberg
129-point Romberg
257-point Romberg
513-point Romberg
1025-point Remberg
2049-point Romberg
4097-point Remberg
8193-point Romberg
16385-point Romberg
3-point Chebyshev
4-point Chebyshev
5-point Chebyshev
6-point Chebyshev
T-point Chebyshev
9-point Chebyshev
3-point Lobatto
4-point Lobatto
5-point Lobatto
6-point Lobatte
7-point Lobatto
8-point Lobatto
9-point Lobatto
10-point Lobatto
2-point Gauss
3-point Gauss
4-point Gauss
5-point Gauss
6-point Gauss
7-point Gauss
8-point Gauss
9-point Gauss
10-point Gauss
12-point Gauss
16-point Gauss
20-point Gauss
40-point Gauss
96-point Gauss
2*5-point Gauss
10*5-point Gauss
20*5-point Gauss
100*5-point Gauss

Table 1. Results by Method

RESULT
2.302585092994046
3.293181818181818
2.629221182043763
2.378968253968254
2.320713727992899
2.303266344275725
2.302591788824242
2.302585159832371
2.740509090909091
2.407900969997744
2.320575735326238
2.303996791535492
2.302587417884465
2.302585093214436
2.302585092994053
2.563392857142857
2.385700428603654
2.359816280203757
2.324715568045400
2.318756672902205
2.309464383406782
2.307779655612245
2.304925264954663
2.304389575052643
2.302836691040503
2.302624627351999
2.302585604701296
2.302585101885737
2.302585386278535
2.299587560505099
2.740509090909091
2.385700428603654
2.313627920068950
2.303414977334841
2.302615169490732
2.302585558689706
2.302585095812344
2.302585093000290
2.302585092994049
2.302585092994044
2.302585092994055
2.302585092994049
2.302585092994024
2.302585092994025
2.185206098280966
2.255234587073967
2.270694358126710
2.288199209959526
2.292318127020230
2.298956393557629
2.740909090909091
2.399427496016199
2.326155917967643
2.308566606914805
2.304135007946037
2.302991462666707
2.302692421630770
2.302613573419385
2.106382978723405
2.246609743847312
2.2849469523872802
2.298283110737116
2.301408084107758
2.302264348288730
2.302497902032418
2.302561429367133
2.302578677886270
2.302584622579007
2.302585090482857
2.302585092979036
2.302585092995388
2.302585092994049
2.302323045787393
2.302585083047175
2.302585092966214
2.302585092992895

ERROR
NA
.990596725187773
.326636089049717
.076383160974208
.018128634998853
.000681251281679
.000006695830197
.000000066838326
.438323997915045
.1053158770035%8
.017990642332192
.001411698541444
.000002324890419
.000000000220350
.000000000000007
.260807764148811
.083115335609608
.057231187209711
-022130475051354
.016171579908159
.006879290412736
.005194562618159
.002340171960618
.001804482058597
.000251598046457
.000039534357953
.000000511707250
.0000000088%1631
-00000029328448%
.002997532488947
.438323997915045
.083115335609608
.011042827074504
.000829884340795
.000030076496687
.000000465695660
.000000002818300
.000000000006244
.000000000000004
.000000000000002
.00000000000000%
.000000000000003
.000000000000022
.000000000000020
- 117378994713080
. 047350505920073
.031890734867338
.014385883034520
-010266965973814
.003628699436417
.438323997915045
.096842403022153
.023570824973597
.00598151392076C
.001549914951991
.000406369672661
.000107328636724
.000028480425335
.196202114270641
.055975349146733
.015615569121244
.004301982256930
.001177008886287
.000320744705314
.000087190961628
.000023663626913
.000006415107776
.00000047041503%
.00000000251118%
.000000000015010
.000000000001342
.00000000000000C4
.000262047206653
.00000000994687 1
.000000000027832
.000000000001151

SEC

NA
.0556
.0934
L1879
55151
1.8611
18.5000
185.7000
0549
.0932
. 1689
.3539
1.8364
18.5833
185.6000
.0520
.0629
.058%
.0664
.0780
.0849
.0970
.1032
L1166
. 1496
1923
L2792
.3846
L4630
+2F39
.0563
.0948
.1683
3155
.6054
1.1882
2.3372
4,6682
9.2909%
18.5000
36.9667
73.8500
148.3000
295.5000
L0434
.0522
.0646
.0588
.0680
.0874
.0430
.051
.0638
.0581
.0676
.0773
.0868
.0965
0327
L0434
.0523
L0646
.0590
.0681
.0781
.0872
0974
.1163
.1553
.1925
+3855
.9191
.0971
.4808
.9585
4.7955

DIGITS/SEC

NA
074
5.203
5.946
4.668
1.702
.280
.039
6.523
10.485
10.330
8.054
3.068
.520
076
11.221
17177
21.089
24,932
22.964
25.476
23.549
25.496
23.540
24,067
22.896
22.535
20.933
14,111
4,397
6.362
11.3%94
11.625
9.767
7.469
5.329
3.658
2.400
1.555
97
.380
.196
.092
.046
21.441
25.386
23.163
31.343
29.245
27.923
8.339
19.825
25.508
38.239
41.544
43,865
45,736
47.0%1
21.662
28.852
34,565
36.631
45.666
51.313
51.962
53.025
53.323
54.398
55.385
56.218
30.797
15.72]
36.891
16.645
11.013
2.490



METHOD

exact=Iln(10)
20-point Gauss
16-point Gauss
12-point Gauss
10-point Gauss
9-point Gauss
8-point Gauss
7-point Gauss
é-point Gauss
10-point Lobatto
9-point Lobatto
8-point Lobatto
7-point Lobatto
é-point Lobatto
2*5-point Gauss
S-point Gauss
4-point Gauss
6-point Chebyshev
40-point Gauss
7-point Chebyshev
3-point Gauss
9-point Chebyshev
S5-point Lobatto
11-point Newton-Cote
9-point Newton-Cotes
4-point Chebyshev
7-point Newton-Cotes
16-point Newton-Cote
10-point Newton-Cote
12-point Newton-Cote
S-point Chebyshev
8-point Newton-Cotes
20-point Newton-Cote
30-point Newton-Cote
2-point Gauss
3-point Chebyshev
6-point Newton-Cotes
40-point Newton-Cote
4-point Lobatto
S-point Newton-Cotes
10*5-point Gauss
96-point Gauss
50-point Newton-Cote
9-point Romberg
5-point Romberg
4-point Newton-Cotes
20*5-point Gauss
S-point Simpson
10-point Simpson
17-point Romberg
3-point Lobatto
20-point Simpson
33-point Romberg
3-point Simpson
3-point Romberg
10-point trapezoidal
65-point Romberg
5-point trapezoidal
20-point trapezoidal
60-point Newton-Cote
129-point Romberg
100-point Simpson
100*5-point Gauss
257-point Romberg
100-point trapezoida
513-point Romberg
1025-point Romberg
1000-point Simpson
2049-point Romberg
1000-point trapezoid
4097-point Remberg
8193-point Romberg
10000-point Simpson
3-point trapezoidal
16385-point Romberg
10000-point trapezoi

Table 2. Results by Cost-Effectiveness

RESULT
2,302585092994046
2.302585092979036
2.3202585090482857
2.302584622579007
2.302578677886270
2.302561429367133
2.302497902032418
2.302264348288730
2.301408084107758
2.302613573419385
2.302692421630770
2.202991462666707
2.304135007946037
2.308566606914805
2.302323045787393
2.258283110737116
2.286969523872802
2.288199209959526
2.302585092995388
2.292318127020230
2.246609743847312
2.298956393557629
2.326155917967643
2.304925264954663
2.309464383406782
2.255234587073967
2.324715568045400
2.302836691040503
2.307779655612245
2.304389575052643
2.270694358126710
2.318756672902205
2.302624627351999
2.3025856047012956
2.108382978723405
2.185206098280966
2.359816280203757
2.302585101885737
2.399427496016199
2.385700428603654
2.302585083047175
2.302585092994049
2.302585386278535
2.313627920068950
2.385700428603654
2.563392857142857
2.302585092966214
2.4079009699977 44
2.320575735326238
2.303414977334841
2.740909090909091
2.303996791535492
2.302615169490732
2.740%09090209091
2.740%05090909091
2.378968253968254
2.302585558689706
2.629221182043763
2.320713727992899
2.299587560505099
2.302585095812346
2.30258741788B4465
2.302585092992895
2.302585093000290
2.303266344275725
2.302585092994049
2.302585092994044
2.302585093214436
2.302585092994055
2.302591788824242
2.302585092994049
2.302585092994024
2.302585092994053
3.293181818181818
2.302585092994025
2.302585159832371

ERROR
NA
.000000000015010
.00000000251118%
.000000470415035
.000006415107776
.000023663626513
.000087190961628
.000320744705316
.001177008885287
.000028480425333
.000107328636724
.000406369672661
.001549914951991
.005981513920760
. 000262047 206653
.004301982256930
.015615569121244
.014385883034520
.000000000001342
.010266965973816
.055975349145733
.003628699436417
.023570824973597
-002340171960618
.006879290412736
-047350505920075
.022130475051354
-000251598046457
-0051594562618199
-001804482058597
.031850734867335
.016171579908159
.000039534357953
-000000511707250
. 196202114 270641
.117378994713080
.057231187203711
-0000000088%1691
-096842403022153
.083115335609503
-000000009946871
.000000000000004
.000000293284489
.011042827074%04
.083115335609508
. 260807764148811
.000000000027832
.105315877003433
.017990642332192
.000829884340755
.438323997915045
.001411698541445
.000030076496687
-438323997515045
.438323997915045
.076383160974203
-000000465695660
-326636089045717
.018128634998853
-00295753 2488947
.000000002818300
-000002324890419
.000000000001151
.000000000008244
.000681251281679
.000000000000004
.000000000000002
.000000000220350
.000000000000009
.000006695830157
.000000000000003
.000000000000022
.000000000000007
.990596725187773
.000000000000020
-000000066838324

SEC

NA
1925
.1553
.1163
.0974
.0872
.0781
.0681
.05%0
.0965
.0868
L0773
.0676
.0581
.0971
L0646
.0523
.0588
.3855
.0680
L0434
L0874
.0638
.1032
.0849
.0522
0664
- 1496
.0970
L1166
.0646
.0780
.1923
.2792
.0327
L0434
.0589
.3846
.0511
.0629
.4808
.9191
L4630
.1683
.0948
.0520
.9585
.0932
. 1689
.3155
.0430
3339
. 6054
.0549
.0563
L1879
1.1882
.0934
L3731
.5739
2.8502
1.8364
4£.7955
4.6682
1.8611
9.2909
18.5000
18.5833
36.9667
18.5000
73.8500
148,3000
185.6000
.0556
295.5000
185.7000

DIGITS/SEC
NA

56.
55.

47
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218
385
.398
P Yk
.025
.962
.313
666
.091
.736
.865
. 544
239
.891
631
.565
343
T97
245
.852
+223
.508
496
LT6
.386

.. 932

067
.549
.540
.163
964
.896
535
662
441
.089
.933
.825
77
.645
721
A1
.625
394
.221
.013
.485
.330
767
339
.054
469
523
362
946
.329
.203
.668
39
.658
.068
490
.£00
.702
293
T97
.520
.380
.280
196
.052
076
074
.046
.039



