
page 1 of 12

DEVELOPMENT OF THE FAST 3D PARTICLE TRACKER: PTRAX

Dudley J. Benton presented at the:

Environmental Consulting Engineers Tennessee Water Resources Symposium

Knoxville, Tennessee Nashville, Tennessee, February, 1997

ABSTRACT

 Particle tracking has been successfully used to model diverse

phenomena. Although the present application is for the transport

of contaminants within a groundwater system, the same algorithm

could be used for a variety of applications. In addition to

deterministic particle tracking, in order to simulate variability in

the transport media, a random walk is included in the algorithm.

 Deterministic 3D particle tracking is a formidable task. The

addition of a random walk adds considerably to this complexity.

In order to accurately model statistically variable systems, it is

necessary to have a very large sample, that is, to track a large

number of particles. Practical simulations using this technique

must, therefore, rely on a very fast algorithm. PTRAX is a

computer code developed to implement these concepts.

NOMENCLATURE

n number of steps and/or particles

R a normalized random number

∆S random step length

∆T time step

U velocity component in the X direction

V vector velocity

V velocity component in the Y direction

W velocity component in the Z direction

Greek

α dispersion length

Subscripts

i particle step

L in the longitudinal direction

M mean (i.e., non-random)

T in the horizontal-transverse direction

V in the vertical-transverse direction

X in the X direction

Y in the Y direction

Z in the Z direction

INTRODUCTION

 The present application is contaminant transport within a

groundwater system. In this case a velocity field is computed

using an Eulerian framework code. The particles are then tracked

within this field. Conventional particle tracking is based on a

Lagrangian approach where time is the primary independent

variable and velocity is the secondary. The location of a particle is

determined by integrating the velocity with respect to time; thus,

in an analytical sense, conventional particle tracking involves the

solution of temporal Volterra integral equations. For non-trivial

problems, the velocity varies with location, making the problem

implicit. The most common integration scheme used is the

Runge-Kutta. Various predictor/corrector schemes are also

employed. Because the problem is implicit, step-length control is

preferred to uniform small steps. As will be detailed

subsequently, a variable time step increases the complexity of the

random walk.

 Computation of stream lines within an Eulerian framework

might be thought of as analogous to Lagrangian particle tracking.

The difference between two adjacent stream lines is the mass

flowing between them. Contaminant transport could be computed

in this framework by solving along the stream lines. Within an

Eulerian framework, location becomes the primary independent

variable; and partial differential equations are solved.

 Locating the stream lines within an Eulerian framework and

solving equations along them is quite computationally intensive,

and essentially impractical. This is why most codes resort to

Lagrangian particle tracking. Flow fields are rarely solved within

a Lagrangian framework because the boundary and initial

conditions are problematic, making the method impractical. Thus,

obtaining a flow field and particle tracks in a practical

implementation necessitates combining differing frameworks.

 The Lagrangian and Eulerian frameworks are different

enough to make their coupling in this way inherently inefficient.

A different framework is proposed which is somewhere between

these two. In this alternative framework, location and velocity are

the primary and secondary independent variables and time is the

dependent. This combination of variables may be thought of as

analogous to a Hamiltonian framework. Within this framework, in

an analytical sense, spatial Fredholm integral equations are

solved.

 Whatever framework is employed, there is considerable

transformation and computation between a grid, velocity field,

and particle seeds and the tracking of the particles. The present

particle tracking algorithm is shaped by these transformation and

computational steps; therefore, it is necessary to first describe

these.

GRID TRANSFORMATION

 The process of transforming a grid into a cell-linked space

within which particles can be tracked is the first step in

implementing the present scheme. The following steps

accomplish this transformation:

Defining Nodes

 Nodes are defined by unique locations in space which are

read from a data file. The number of dimensions is inferred by the

number of coordinates. Two coordinates are interpreted as X,Y

and imply a 2D space. Three coordinates are interpreted as X,Y,Z

and imply a 3D space. Non-unique or coincident nodes will lead

to singular basis equations and must be rejected. A check is

performed for this after all the nodes have been read.

Defining Elements

 Elements are defined by groups of nodes and are read from a

data file. In a 2D space, three nodes imply triangular elements and

page 2 of 12

four nodes imply quadrangular elements. In a 3D space, four

nodes imply tetrahedral elements, six nodes imply prismatic

elements, and eight nodes imply brick elements. The nodes

comprising an element must be unique. A check is performed for

this as the elements are read. Each node must appear in at least

one element. Every node must be connected to every other node

through the elements in order to have a unified (as opposed to a

disjointed) domain. A check is performed for each of these after

all of the elements have been read. No assumptions are made as to

the angles formed by the sides of the elements (e.g., sides of 3D

bricks are not assumed to form right angles).

Element Orientation

 Elements must be numbered according to some convention

in order to determine their connectivity. The convention adopted

by PTRAX is counter-clockwise orientation. In 2D, this means

that the area of each element is computed as a positive number.

Any element having an area less than some small value (e.g., 10
-9

times the total area) is rejected as degenerate. In 3D, this means

that the volume of each element is computed as a positive

number. Any element having a volume less than some small value

(e.g., 10
-9

 times the total volume) is rejected as degenerate.

 3D elements have the added complexity of orientation of the

faces. These too must be positive in the vector sense (i.e., the dot

product of the outward normal area vector with the vector

beginning at the volume centroid and passing through the area

centroid of each face must be positive). As numbering schemes

differ, and so as to provide the greatest convenience, PTRAX

analyzes each element and sets bit flags to indicate the orientation

of each element and face.

 In the case of 2D elements, it is always possible to renumber

the elements so as to conform their orientation. However, in the

case of 3D elements, ambiguities may arise which force the

element to be rejected. If the elements can be renumbered without

ambiguity, the process continues and the total number of miss-

oriented elements is listed for information. If a minor ambiguity

occurs (i.e., involving symmetrically opposed faces), a warning is

issued and the process continues. If a major ambiguity occurs

(i.e., involving adjacent faces), the element is rejected. The

necessity of this distinction between fatal and non-fatal

ambiguities will become apparent as the element splitting is

described. As the orientation of each element is analyzed, various

numbering conventions can be mixed within a single grid and the

end result will be the same.

Node: Element Links

 The first step in connecting the elements is to build a list of

node:element links. When complete, this list will contain each

element in which each node appears. As PTRAX uses dynamic

memory allocation and pointers, this list will resemble a simple

database structure and require a minimum amount of storage.

Each node will be assigned an index where its list of elements

begins as well as a count. The maximum count for all nodes is a

measure of the bandwidth. This is listed for information.

Element: Element Links

 The second step in connecting the elements is to build the list

of element:element links. This is structured like the node:element

list and represents a recursional search of the node:element list for

nodes common to each face of each element. Any element face

which is not connected is external (i.e., represents a boundary);

while any connected face is interior.

 A recursional search of the node:element list for nodes

common to each face represents a potentially immense

calculation. If an exhaustive search were performed using nested

loops, the number of comparisons would be proportional to the

number of elements cubed. Clearly, this would be impractical for

any sizable grid. PTRAX uses a hashing, followed by a Q-sort on

the element faces, followed by a bubble-up on the facial nodes.

This combined algorithm selects, in order, the members common

to a variable number of lists, each of variable length. The time

required for this procedure is roughly twice that required to

determine the connections to a single face using nested loops. For

a grid containing thousands of elements, this procedure reduces

the computational time by orders of magnitude. The time required

for this procedure is of the same order of magnitude as reading

the node and element files. The maximum number of connections

between elements is a measure of the bandwidth and is listed for

information.

Element Face Orientation

 As the elements are analyzed, bit flags are stored indicating

the element orientation as well as the orientation of each face for

3D elements. The elements are not actually renumbered, only the

bit flags are set to indicate their orientation. When the elements

are connected at the faces, it is necessary to mate their orientation.

The orientation flags must be adjusted so that each corresponding

face where two elements are connected satisfy orientational

reciprocity. The dot product of the outward normal area vector for

each pair of element faces must be negative (i.e., opposite in

direction).

Element Splitting

 In numerical analysis, the variation of parameters within an

element is approximated by basis functions. These basis functions

vary over the element and are typically assumed to combine

linearly (i.e., superimpose). The only basis functions which assure

continuity of a varying parameter at every point on a face between

two elements are the linear combinations of the spatial directions

(i.e., C1+C2X+C3Y+C4Z). An added benefit of this selection of

basis functions is that the area of triangular elements and the

volume of tetrahedral elements is equal to the determinant of the

basis matrix and must be computed anyway.

 Selection of these basis functions fixes the element type in

2D to be triangular and in 3D to be tetrahedral. In order to analyze

the grid, PTRAX splits quadrilaterals into two triangles, prisms

into three tetrahedra, and bricks into five tetrahedra. Splitting

quadrilaterals into triangles is a simple matter; however, splitting

3D elements requires that adjacent sides have a certain

orientation.

 Uniformly oriented prisms when split into three tetrahedra do

not have a line of symmetry, and thus, do not match-up. Proper

splitting of prisms requires that every other prism be split as a

mirror image. As there is an odd number of sides to the triangles

forming the ends of the prisms, this does not inherently lead to

orientational conflict and is basically a matter of bookkeeping,

which is handled by the element orientation flags.

page 3 of 12

 3D bricks do have a line symmetry, but must be alternately

rotated 90°. Grids where 3D brick elements are inserted in odd

numbers around an internal boundary cannot be properly split into

tetrahedra, as there is no combination of rotations which will

result in the tetrahedra properly connecting. A check is performed

for this as the elements are split and any such conflicts result in

the grid being rejected.

 The basic 2D building block is the triangle. The basic 3D

building block is the tetrahedra. As more complex elements are

split into these basic building blocks, the term cell is used.

Node: Cell Links

 As PTRAX uses dynamic memory allocation and pointers,

grids whose elements do not require splitting into cells, only

require that the pointers be equivalenced. Grids whose elements

are split into cells require additional storage. Grids whose

elements require splitting must be reanalyzed for node:cell links.

During this process, several auxiliary parameters are calculated,

such as the cell centroids. Grids whose elements are not split,

already have the node:cell links established, as node:element

links. Some runtime is reported even in these cases, because of

the auxiliary parameter calculations. Once again, each node must

appear in at least one cell; and every node must be connected

through the cells to every other node. Grids failing any one of

these tests are rejected.

Cell: Cell Links

 As PTRAX uses dynamic memory allocation and pointers,

grids whose elements do not require splitting into cells, only

require that the pointers to the list of cell:cell links be

equivalenced to the list of element:element links. Grids whose

elements are split into cells require additional storage and must be

reanalyzed. During this process external faces are flagged by -1;

whereas internal faces have some index greater than or equal to

zero. Some runtime is reported even in these cases, because of the

face flag calculations. The same fast algorithm is used to establish

the cell:cell links.

 Once the list of cell:cell links has been established, given a

starting point within any cell, all of the paths leading from that

cell are given in the list. A path leaving a cell may end at a

boundary or enter an adjacent cell. This cell:cell link list is the

road map for particle tracking.

Additional Checks and Information

 While this cell:cell list is created, a number of checks and

non-essential calculations are performed. As these have been

carefully optimized, the cost in runtime is minimal while valuable

information is gained about the grid structure and important

checks performed which are not done in many codes. Varying

amounts of this information can be listed through command

options. In addition to these, an entire nearest neighbor node list,

associated bandwidth, and pivot matrix, which are the core of

finite element modeling, can optionally be generated and listed

through command options. While this information is not used by

PTRAX, it can be useful in grid analysis and can serve as a

further check. These steps are included as PTRAX had its origin

in a FEM code, and may eventually use this information for

enhanced modeling.

PARTICLE TRACKING

 Particles can be seeded automatically, scattered throughout

the grid, or specifically in a data file. The seed locations can be

specified by element or by X,Y,Z location and initial mass. As

finding the cell containing the seed is a time-consuming process,

the element in which the particle is seeded can optionally be

specified along with the location. This directly specifies the cell if

the elements are not split, or confines the range of cells to be

searched for the nearest centroid if the elements are split. This can

save considerable runtime.

 A particle must lie unambiguously within a cell on the first

step. Incorrectly specifying the starting cell will result in the

particle being artificially trapped. As there is no prior step or

history at the start, a particle must not be seeded on a boundary

between two cells (On subsequent steps it may frequently lie on

cell boundaries.). As indicated previously, PTRAX can handle

some ambiguously numbered 3D elements. Ambiguously

numbered elements can result in particle reflection. Reflection

will trap a particle if it is not seeded unambiguously within the

interior of the cell. Whether or not a particle is unambiguously

within the interior of a cell depends on factors such as cell aspect

and round-off and is not easily quantified. In order to avoid these

problems, PTRAX by default repositions all seeds at their start to

the centroid of the nearest cell. This feature can be defeated by a

command parameter.

Velocity Field and Properties

 The velocity field can be specified as a default for all

elements or separately for each element in a data file. The velocity

is initially divided by the porosity and retardation factor. Porosity

and retardation factor can be specified as a default for all

elements or separately for each element in a data file. The default

values are set in the code or are read from the optional

configuration file, which can be modified as needed. The

concentration (mass/volume) is multiplied by the porosity upon

completion of the simulation. Cells which are split inherit the

properties of the parent element.

Solving for Particle Direction

 Within a cell, a particle moves from its current position in

the direction of the local velocity vector until it intersects a face.

[The random walk is a modification to this procedure and will be

detailed subsequently.] The intersected face is determined by the

following procedure: The equation for the line in 2D or plane in

3D defined by each face of the current cell is determined. This

arises directly from the assumed linear basis functions and results

in an unambiguous calculation. The necessity of splitting prisms

and bricks into tetrahedra can be seen from this: four unique

points do not necessarily lie in the same plane in 3D. Four points

may form a saddle. There is no ambiguity in the lines and planes

defined by the faces of triangles and tetrahedra. The length of the

side in 2D or area of the face in 3D is the determinant of the basis

matrix. As the cells have already been screened and the lengths

and areas computed, this assures non-singular results and reduces

the number of calculations within a deeply-nested loop.

 The distance along the local velocity vector, from the current

particle location to the intersection with a face, is the time. If the

computed time for a given face is zero, the particle does not

page 4 of 12

move. [This may seem to be a trivial case, but will have

applicability in the random walk as detailed subsequently.] If the

time is negative, this represents a backward step and is rejected.

The face which produces the minimum time, greater than zero, is

the first intersected, and thus, the point of exit from the cell. If the

cell:cell link corresponding to the exiting face is greater than or

equal to zero, then the particle continues on into that cell. If the

link is equal to -1, the particle exits at the boundary.

Particle Track Termination

 Several causes may result in the termination of a particle

track. These include: capture by a well, complete decay of mass,

escape through a boundary, stagnation, and the end of the

tracking period.

 Wells are defined by capture zones. Wells are specified in a

data file by nodes, elements, or location, screen opening, and

capture radius. If a particle enters the capture zone of a well, its

track ends and its mass and time of capture are transferred to the

corresponding well.

 The decay of particle mass may be specified as a half-life for

each element or a constant value for all elements. If the half-life

for a cell is greater than zero, then the particle mass decays based

on how long the particle stays in the cell. The decayed mass is

transferred permanently to the cell in which the decay occurred. If

the half-life within a cell is zero, then all of the particle mass is

transferred to the current cell at the time it enters the cell and the

track is terminated.

 If a particle escapes at a boundary, its track is terminated and

its mass and time of escape is transferred to the global counters

for escaped particles.

 If a particle enters a cell having zero velocity, the time to

reach any face would be infinite, so its track is terminated and its

mass is transferred to the current cell along with its time of entry.

 If a particle enters a cell where the velocity is not zero, but

no exit times are computed for the faces which are greater than

some small value (e.g., 10
-9

 times the previously defined small

length divided by the r.m.s. average field velocity), then it is

considered to be trapped. Any occurrence of this trapping is

considered anomalous (i.e., should not occur under normal

circumstances). A count of such trapped particles is listed as an

additional check.

 A final cause for particle track termination is the maximum

steps along a track. Before tracking a particle, it is necessary to

allocate storage for its history. This is used for bookkeeping and

calculation of snapshots or field samples at specific times. The

maximum steps along a track is defined in the code or specified in

the optional configuration file, which can be modified as needed.

 The number of particle tracks terminating for each of these

causes is listed after all of the particle tracks are computed. In

addition, if particle tracks are to be saved for plotting, the cause

for termination of each particle track is filed in both numerical

form (i.e., an index) and text form (i.e., a string such as boundary

or decay).

 Two separate lists are kept for particle track termination: one

associated with the particle and one associated with the receptor

of the particle (e.g., a well or boundary). Any disagreement

between these two lists is considered anomalous (i.e., should not

occur under normal circumstances). A count of the difference

between these lists, or the missing particles, is listed as an

additional check.

SNAPSHOTS AND WELL LOGS

 The ensemble of particles is sampled at specific times as

defined in the code or specified in the optional configuration file,

which can be modified as needed. The information associated

with these specific times, or snapshots, is saved in sequentially-

named files after all of the particles have been tracked. The

contribution of each particle is added to each snapshot at the end

of its track. Although the particles are tracked on a cell basis, the

snapshots are accumulated on an element basis. The storage for

these snapshots must be allocated before any particles are tracked.

If the particle tracks are to be saved for plotting, each track is

filed after the snapshots are updated. The storage for a particle

track is used over again so that the requirement does not grow

with the number of particles.

 Every time a particle is captured by a well, the mass and time

of capture is recorded. Two separate lists are maintained for this

capture. One is based on the snapshot interval. This requires

minimal storage, which is allocated before any of the particles are

tracked. A second optional list is kept which contains every

particle captured by every well, its mass when captured, and when

it was captured. This list grows with the number of particles and

may become very large. After all of the particles are tracked, this

optional list is sorted and filed by well.

 Each snapshot file contains a summary by particle and mass.

This summary includes the particle count and mass for each track

termination cause as well as the double-checking for missing and

trapped particles (Which should always be zero if the grid,

velocity and property fields, seeds, and wells are properly

defined.). The centroid, concentration (volume/mass), mass,

accumulation, and element number are filed for each element. By

default, only those elements containing some mass are filed.

Optionally, a command parameter can be used to force all

elements to be filed.

 If there are any wells, the total mass captured by each well is

listed at the bottom of each snapshot file. As these entries contain

fewer numbers than the element-by-element concentrations, data

analysis and presentation programs should be able to directly

distinguish these results. Alternately, these results might be

stripped off and filed separately.

RANDOM WALK

 A random walk is used to model variability in the transport

media. The random walk is a means of quantifying the results of

dispersion, which is thought to arise from this variability.

Dispersion

 Dispersion in groundwater transport is characterized by a

dispersion length. A separate dispersion length can be specified

for the two or three dimensions of the grid space. Default

dispersion lengths can be assigned to all elements or separate

values can be specified for each element in a data file. The default

dispersion lengths are defined in the code or specified in the

optional configuration file, which can be modified as needed.

page 5 of 12

Cells which are split inherit the properties of the parent element,

including the dispersion lengths. The dispersion lengths can be

applied along the grid axses (i.e., X,Y,Z) or along the local axses

(i.e., longitudinal, horizontal-transverse, and vertical-transverse).

 The random step length associated with a dispersion length is

defined by the following equation:

 T || 2 R = S m ∆∨∆ α (1)

where ∆S is the random step length, R is a normalized random

number (i.e., having a mean of 0 and a standard deviation of 1), α

is the dispersion length, VM is the magnitude of the mean (i.e.,

non-random) velocity, and ∆T is the time step.

 For dispersion in several directions, multiple random

numbers (i.e., R s) and directionally associated dispersion lengths

(i.e., αX, αY, αZ or αL, αT, αV) are combined to form the random

steps (i.e., ∆SX, ∆SY, ∆SZ or ∆SL, ∆ST, ∆SV). For a particle

traversing a cell, there is an effective random velocity associated

with the random step length and implied time step.

T

S
 = R
∆
∆

∨ (2)

 For dispersion in several directions, the effective velocity

components can be represented by a mean and random part:

T

S
 + U = U + U = U

X
MRMT

∆
∆

 (3)

T

S
 + V = V + V = V

Y
MRMT

∆
∆

 (4)

T

S
 + W = W + W = W

Z
MRMT

∆
∆

 (5)

where U, V, and W are the velocity components in the X, Y, and Z

directions, respectively. If dispersion lengths are specified along

the longitudinal, horizontal-transverse, and vertical-transverse

directions, the corresponding steps along the principle axses are

computed using standard trigonometric relationships.

Statistical Requirements

 For a statistically large sample (i.e., many particles), the net

influence of the random walk on the ensemble of particles must

exhibit several properties:

1) The spreading (over that without dispersion) in the

direction associated with each α is proportional to the

square-root of α and ∆T.

2) The net displacement of the particles (compared to that

without dispersion) is zero.

3) The net movement of the mass-weighted centroid of the

particles is the same with or without dispersion.

 Given these properties and the relationships between the

random step length, mean and random velocity components, and

time steps, the following requirements can be deduced:

 0 S i

n

1=i

≈∆∑ (6)

 0
T

S

i

i
n

=1i

≈
∆
∆

∑ (7)

 These summations must hold for a single particle as well as

for the ensemble, and they must hold in each dimension. In order

to simultaneously satisfy these pairs of relationships, the time

steps must be equal (i.e., if they are equal, then ∆T can be brought

outside the summation).

 Because these statistical relationships require equal time

steps, an immediate problem arises, regardless of whether

conventional Lagrangian particle tracking or the present method

is used. Efficient implementation of a Lagrangian method

requires a dynamically adjusted step length. Implementation of

the present scheme results in time steps varying over orders of

magnitude, as a particle may pass through a cell near a vertex and

cover a small distance in a correspondingly small time. If a

constant time step is required, then the smallest required time step

becomes a limiting factor and results in impractical runtimes. It is

for this reason that the random walk is not frequently used in

large particle tracking applications or such applications are run on

super computers.

Synchronous Time Steps

 If variable time steps are adjusted such that they fall-out on a

constant time step with sufficient frequency to represent a

statistically significant sample, and the statistical calculations

(i.e., the random walk steps) are performed on these synchronous

time steps, this limitation can be overcome. This requires keeping

two lists of particle history: one based on the constant time step

and one based on the variable steps (which periodically add-up to,

and thus, synchronize with the constant time step). This can be

accomplished with a Lagrangian tracking scheme by requiring the

refined time steps to be integer divisions of the coarse time step.

It is accomplished in the present scheme by summing and/or

truncating sequential particle steps (i.e., lurching) through the

cells so as to synchronize with a constant time step. The present

scheme uses an innovative bookkeeping algorithm to combine

these two lists.

 Computational experiments comparing the present scheme

and an analytical solution indicate that the synchronous time step

need not be equal to the smallest cell traverse time. The

synchronous time step need only be small enough such that there

are sufficient steps along a single particle track to represent a

significant statistical sample (25 has proven to be sufficient for

these experiments). If the statistical results are satisfied for each

particle, then they will necessarily be satisfied for the ensemble.

On a practical level, even if the number of synchronous steps

along some of the particle tracks is smaller than this, the

combined result for the ensemble will be satisfied if there are

many particles (100 has proven to be sufficient for these

experiments). The present scheme selects a synchronous time step

such that the particle tracks will endure for an average of

approximately 25 intervals. The average particle track may endure

for over 100 asynchronous intervals. A typical Lagrangian

scheme may require 1000 steps for the average particle track;

thus, the present scheme represents a significant improvement in

runtime and storage.

page 6 of 12

RESULTS

 Figure 1 shows the track of 11 particles seeded at slightly

different locations in the absence of dispersion. Figure 2 shows

the track of the same particles with typical dispersion factors (viz.

αX=12, αY=6, αZ=0). In both cases the velocity field is uniform as

are the properties. Figure 3 shows the track of 100 particles

seeded at the origin with the same dispersion factors. [Note that it

is not practical to plot the tracks of more than 10,000 particles.]

Figure 1

Figure 2. Track of 11 Particles with Dispersion

Comparison with Analytical Solution

 PTRAX has been compared to the analytical model, AT123D

(Yeh, 1981). Dispersion and migration of a point source was

selected as the test case. The flow was assumed to be uniform in

the X direction at 0.02 meters/day. The properties were assumed

to be constant with a porosity of 0.2 and a retardation factor of 1

(i.e., no retardation). The domain was selected having dimensions

of -95 to 605 meters in the X direction, -255 to 255 meters in the

Y direction, and -34 to 34 meters in the Z direction. The grid was

constructed of 10x10x4 meter bricks (in the X, Y, and Z

dimensions, respectively). This results in 60,690 elements and

66,456 nodes. The source was represented by 8,000 particles of

equal mass (0.01 grams), seeded at X=Y=Z=0. This combination

of particle mass, element size, and porosity produces an initial

concentration of 1 grams/meter
3
. A variety of dispersion factors

and two time durations were selected. The results of these

numerical experiments are given in Table 1. The agreement

between PTRAX and the analytical solution of Yeh was found to

be excellent. Figures 4 and 5 show contours of computed

concentration for PTRAX and the analytical solution,

respectively.

Figure 3. Track of 1000 Particles with Dispersion

Performance

 PTRAX was developed on and for the PC platform.

Runtimes for the test cases (8,000 particles for 30 years) were

under 2 minutes on a Pentium 90. Tracking 500,000 particles for

50 years requires 80 minutes and 18 MB RAM on the same

machine. PTRAX has been run with as many as 1,000,000

particles, with up to 250,000 elements, and for simulations up to

10,000 years. All of these runs were made on a Pentium;

however, an 80386 machine might have been used, as no special

features of the Pentium are required. PTRAX does, however,

require extended memory and runs in protected mode (i.e.,

requires an 80386 or better processor).

SUMMARY

 An alternative approach to Lagrangian particle tracking has

been presented. This approach is more easily mated with Eulerian

flow fields. This approach is also considerably faster than

conventional particle tracking. This improved performance is due

in part to its integration methodology, which is based on velocity

and spatial steps rather than temporal steps. A computer program,

PTRAX, which is coded in C, has been developed for the PC

platform to implement this approach. Transformation of the grid

into a cell-linked space is accomplished using an innovative

algorithm. The random walk is added to model dispersion. Time

step synchronization is achieved by a lurching procedure which

eliminates the necessity of uniformly small steps. Dual particle

histories (i.e., asynchronous and synchronous) are kept in the

same list to reduce storage, and are used for creating snapshots of

the particle locations at selected times. PTRAX uses dynamic

memory allocation and optimized data structures so that very

large systems can be modeled with modest hardware within a

reasonable time frame (e.g., 20 MB RAM for 1,000,000 particles

in under 3 hours on a Pentium 90).

REFERENCES

Davis, J. C., 1986, Statistics and Data Analysis in Geology,

John Wiley & Sons, New York.

Frind, E. O. and G. B. Matanga, 1985, "The Dual Formulation

of Flow for Contaminant Transport Modeling," Water

Resources Research, 21:2, pp. 159-169

Matanga, G. B., 1993, "Stream Functions in Three-

Dimensional Groundwater Flow," Water Resources

Research, 29:9, pp. 3125-3133.

Prickett, T. A., T. G. Naymick, and C. G. Lonnquist, 1981, "A

page 7 of 12

Random Walk Solute Transport Model for Selected

Groundwater Quality Evaluations," Illinois State Water

Survey Bulletin 65.

Yeh, G. T., 1981, "AT123D: Analytical Transient One-, Two-,

and Three-Dimensional Simulation of Waste Transport in

the Aquifer System," Oak Ridge National Laboratory

Report 5602, Oak Ridge, Tennessee.

USGS, 1989, "Documentation of Computer Programs to

Compute and Display Pathlines Using Results from the U.

S. Geological Survey Modular Three-Dimensional Finite-

Difference Ground-Water Flow Model," USGS Report

89-381

Young, S. C., 1995, "Verification of PTRAX," Report prepared

for Martin Marietta Energy Systems, Oak Ridge,

Tennessee, by Environmental Consulting Engineers,

Knoxville, Tennessee.

Zheng, C., 1990, "PATH3D Version 2.0 User's Manual," S. S.

Papadopulos and Associates, Rockville, Maryland.

Table 1. Comparison of Numerical Model and Analytical Solution

Dispersivity 15 Years 30 Years Test

Case αX αY αZ

Model

X Y Z σX σY σZ X Y Z σX σY σZ

Numerical 109.4 0.4 0 25.6 25.8 8.0 218.7 0.8 0 37.1 36.9 11.31 3 3 0.3

Analytical 109.5 0 0 25.6 25.6 8.1 219.0 0 0 36.2 36.2 11.4

Numerical 109.3 0.1 0 25.9 8.7 8.1 218.7 0.3 0.1 37.1 12.0 11.42 3 0.3 0.3

Analytical 109.5 0 0 25.6 8.1 8.1 219.0 0 0 36.2 11.4 11.4

Numerical 109.1 0.5 0 51.1 51.1 8.1 217.7 1.4 0.1 73.5 72.8 11.43 12 12 0.3

Analytical 109.5 0 0 51.3 51.3 8.1 219.0 0 0 72.4 72.4 11.4

Numerical 109.5 0.3 0.2 50.6 16.4 8.2 218.2 0.5 0.1 72.7 23.3 11.44 12 1.2 0.3

Analytical 109.5 0 0 51.3 16.2 8.1 219.0 0 0 72.4 22.9 11.4

Notes: Numerical indicates the results of PTRAX

Analytical indicates the results of the AT123D analytical model

X is the mean distance traveled by the plume in the X direction (i.e., the first moment of the mass about X)

Y is the mean distance traveled by the plume in the Y direction (i.e., the first moment of the mass about Y)

Z is the mean distance traveled by the plume in the Z direction (i.e., the first moment of the mass about Z)

σX is the X dispersion (i.e., the second moment with respect to X of the mass about X)

σY is the Y dispersion (i.e., the second moment with respect to Y of the mass about Y)

σZ is the Z dispersion (i.e., the second moment with respect to Z of the mass about Z)

page 8 of 12

page 9 of 12

page 10 of 12

page 11 of 12

page 12 of 12

