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ABSTRACT

The relationships governing filelds, stress and strain,
hydrodynamics, and thermodynamics are frequently expressed as integral or
differential equations. Since the introduction of digital computers many
methods have been developed for translating these expressions of fintegral
and differential calculus into algebraic expressions, which may be solved
by numerical means. The two methods most commonly applied are
finite-difference and _finite-element.  These methods are based on
differential and variational calculus, respectively. A third and less
commonly used method, the finite-integral method based on 1ntegit:d1
calculus, is presented. The finite-integral method is compared to the
finite-difference and finite-element methods, and some of the relative
advantages and disadvantages of each are cited. Specific examples are
given for some common engineering applications. Particular emphasis is
placed on the application of the finite-integral method to the Reynolds
Transport Theorem.
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INTRODUCTION

In the course of solving integral and differential equations by
digital means it 1s necessary to translate the expressions of calculus
into expressions of algebra. Specifically, it is necessary to
approximate integrations and differentiations by sums and differences.
The two methods most commonly applied are the finite-difference method
(FDM) and the finite-element method (FEM). The purpose herein is to
introduce a third and _less commonly used method: the finite-integral
method (FIM). Each ﬁgfhod has relative advantages and disadvantages
which make one method preferable over another for a part1ctﬁér
application. It is necessary to understand the strengths and weaknesses
of each to determine which is best suited to an application.

MATHEMATICAL BASIS

Understanding the mathematical basis for the finite-difference,
finite-element, and finite-integral methods is the key to understanding
the differences between the three. The FDM is based on differential
calculus, the FEM 1s based on variational calculus, and the FIM is based
on fintegral calculus. Before a problem can be solved by one of these
three methods 1t must e cast in the corresponding form (differenf?a1,
variational, or 1nteg;§?) by ana1yf1ca] means. The problem statement
should be mathematically equivalent in each case. However, the three
methods begin to diverge when approximations are made (e.g., truncated
series expansions and assumed distributions to facilitate integration).
The key assumption here is that the character of the original problem can
be substantially preserved when making such approximations. The three
methods also diverge 1in the process of translating the approximate
analytical relationships into digital expressions.

COMPUTATIONAL CELLS

The first concept which must be developed 1in describing a
digital/numerical algorithm to solve integral or differential equations
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is the cell. The region of interest must be approximated by a finite
number of discrete subregions (cells) because of the finite capacity of
digital computers. The resolution of calculus is infinite; whereas, the
resolution of digital computers is finite in precision, storage, and
speed. A1l three methods of translating the infinite resolution of
calculus into finite resolution numerical algorithms approximate the
region by an ensemble of cells, each having an analytical description
that is relatively simple compared to the original problem. This
involves an implicit a;sumpt1on called the ensemble hypothesis: the
whole may be constructed by the ordered assemblage of d1st1ngu1shable
parts, none of which possesses all the characteristics of the whole.
Applying the ensemble hypothesis is to assume that the character of the
original problem can be substantially preserved by solving a
significantly simpler, yet similar, problem in each of several cells and
assembling these without actually solving the original problem anywhere
in the region.

The shape of the cells 1is an 1important consideration in
selecting a method for solving integral or differential equations.
Irregular shaped regions are more easily approximated by triangles in two
dimensions, and tetrahedrons in three dimensions, than rectangular
parallelepipeds. The FEM 1is typically developed for triangles and the
FDM 1is typically developed for rectangles, making the FEM more appealing
than the FDM for app]ic&tions involving irregular regions. The FIM may

“be developed for triangles, tetrahedrons, or parallelepipeds.

COMPUTATIONAL NODES

A node is a specific location within the region. A node need
not be stationary and its coord1nafes need not be physical space and
time. Nodes represent the points of intersection between the finite
resolution digital domain and the infinite resolution analytical domain.

The relationship between the cells and nodes is an important
feature of a particular method. The two basic classifications of
cell-node relationships are boundary nodes and internal nodes. Boundary
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nodes 11e on the boundary of the cell and are typically at the corners,
thus corner-boundary nodes (CBN), or at the midpoint between corners,
thus midpoint-boundary nodes (MBN). Internal nodes are typically at the
center of each face of a cell, thus central-face nodes (CFN). These are
i1lustrated in Figure 1.

The FEM typically uses corner-boundary nodes, whereas, the FDM
typically uses central-face nodes. In the case where values on the
boundary of a cell are needed, the FDM may use both central-face nodes
and midpoint-boundary nodes. This is referred to as a staggered grid and
is shown in Figure 2. For the FDM these values on the cell boundary are
typically secondary quantities, interpolated from surrounﬁ%%g
central-face values. In contrast, the FIM uses only midpoint-boundary
nodes. 1In the case where values in the interior of a cell are required,
the FIM may use an average of the midpoint-boundary values.

THE CONTINUITY EQUATION AS AN EXAMPLE

The steady continuity equation from the Eulerian point of view
in two-dimensional rectangular coordinates is expressed as follows:
(Section 4.2 of White)

3(pu) 3(pv)
ax " ey “ Y (M

hh'

Where x and y are the fwo spatial difect1ons. u and v are the components
of velocity in the x and y directions respectively, and p 1is the
density.

. Finite-Difference Method
A FDM expression for Equation 1 would be as follows: (refer to
Figure 3 for notation)

eI, J + 1) u(I, J +1) - p(I,d-1) w(I, J -1)
x(d + 1) - x (J -1)

p(I—]. J} V(I"‘I. J)“P{I+1- J) V(I+1¢ J)__ 0 (2)
y(I - 1) - y(I +1) B

+

Here standard matrix notation is used (viz. The 1,1 entry in a matrix is
the upper left-hand corner. The first index, I, refers to the row number
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and y location; and the second findex, J, refers to the column number and
x location).

Finite-Element Method
Using Galerkin's method as detailed in Section 9.5.3 of Huebner,
the FEM variational statement may be derived for Equation 1 as follows.

Equation 1 is integrated over the element (see Figure 4 for notation).

@ - gy el WAL axay (3)

Applying Green's lemma (Section 13.4 of Wylie) transforms Equation 3 ﬁhto
an integral along the boundary.

Q=](pudy - pvdx) (4)
To perform the integral in Equation 4 1t is typically assumed that pu
and pv vary linearly along the boundaries. Thus the following

expression is obtained for the integral.

Q- Py (Y= ¥3) |, poly (Y3 = ¥y) | paliy (¥y - ¥5)

(%)
s Yy (X3 %) pyVy (Xy = Xg) | pgValXy - X5)
The variational statement is expressed for the ensemble by the following
partial derivitives. =
I  3IQ

au, av, (6)

'||f

Finite-Integral Method

The FIM is developed for the continuity equation by a different
approximation for Equation 4. The FIM uses the midpoint-boundary node
values to represent the average quantity along a boundary. For a

triangular cell this may be expressed by the following (see Figure 5 for
notation).
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Py (Ya-¥y) * ppua(¥g-¥p) *+ paliz(¥y-¥3) (1)

+p V1 (X =X,) + poVo(Xy =X3) + paValxy -X;) = 0

Similarly the FIM may be developed for a rectangular element (see Figure
6 for notation).
PV (Xy-Xp) + ppUp(¥3-¥p) + paVa(Xg-X,)

+ p4”4(!‘1‘.¥4) =0 (8)

—-—

REYNOLDS TRANSPORT AND THE FINITE-INTEGRAL METHOD

Many engineering relationships may be expressed by Reynolds
Transport Theorem (Section 3.2 of White). Reynolds Transport is an
expression of conservation for a general control volume. That is, any
conserved property (e.g. energy and linear momentum) 1is governed by
Reynolds Transport. For a general extensive property, B, and 1its
corresponding intensive property, b, Reynolds Transport may be expressed
by the following.

dB = _d JISbpdxdydz + JJ p{H-dA (9)
dt dt <

Where t is time; x, y, and z are spatial coordinates; p is density; and
V'dA is the dot produg%iof the vector velocity, V, and the d1ffere6{1a]
outward-normal cdntrol'furface area Jector. dA. B and b may be scalar or
vector quantities. When using Reynolds Transport with the FIM, each cell
is considered to be a separate control volume, and the boundary of the
cell is the control surface.

The previous example of the continuity equation may be obtained
from Reynolds Transport by setting b = 1. The term dB/dt becomes the
rate of mass generation, which is zero. For steady conditions the first
integral is also zero, leaving '

0 = JfpV'dA -(10)
which is expressed algebraically as before.

The conservation of linear momentum 1s given by Newton's Second
Law

d(mV)
ge F= dt (11)
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where 9. is Newton's constant, F s the vector force on the control
volume, m is the mass of the control volume, V is the vector velocity,
and t is time. If B=mV and b=V in Reynolds Transport, then Equations 9
and 11 may be combined to yleld

gc F = d_ [[]pVdxdydz + [JVpV-dA (12)
dt
If the flow is steady and the control volume is fixed in space the first
integral is a constant.

gc F = J[VeV-dA (13)

In two d1mens1on§. Equation 13 may be expressed in terms of Ats
x and y components. The resulting FIM equations for a triangular cell
become (see Figure 5 for notation).
9.Fy = Uy (ugyy-y,) + v (x,-%1)) (14)
+ Uypo(Un(¥y-¥q) + VolXg-X5))
+ Uapa(Ug(¥g-yq) + ValXy-X3))

gcfy = V1p.|(u1()’-|-¥2) + v](xz_xl)) (-‘5)
+ Vopo(Us(¥o-Ya) + Vo(Xg-X5))
+ v3p3(u3(y3-y]) + vatx]—xa))

where fx and fy are the x and y components of the force vector. For
the rectangular cell (see-Figure 6 for notation). )
9cfy = U1V (Xy-Xg) + Upp Un(Yp-Yg) + UgeaVa(Xy-X3)
+ UgpgVy(¥y~¥y) (16)
9 fy = ViPVy(XgXy) * VopaUy(¥p-¥3) + VgpaVa(Xy-X3)

+ VgrgVa(¥yYy) (17)

Even with fixed cells and steady conditions the derivitive of
the first integral in Equation 12 is not always zero. An example of this
would be a steady chemical reaction. For instance, chemical species may
react to form new species while 1iberating specific energy <. The
reaction rate per unit mass, R, may be a function of local variables but

is independent of time. The conservation of energy may be expressed by
Reynolds Transport.
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dE = [J[pRedxdydz + [J[phV-dA = 0 (18)
dt

where h is the local enthalpy and may depend on temperature, pressure,
and composition. For a triangular cell (see Figure 5 for notation) the
FIM equation would be:

Re (PI+ 92+ P3)((x3”x )(yz_y1)_(x2'x])(33—y?))/6
+ P]h1(u1(¥]-¥2) + V1(X2—X1))+ chz(uz(YS—y )+ V2(X3—X2})
« PaNa(uz(yz-y), V3(Xy=X3)) _ (19)

For a rectangular cell (see Figure 6 for notation) the FIM equation would
be

Rc(p]+ 92+ P3+ P4) (xz = x])(Yz = yB)/4
+ PNV (XmX) | pohoUs(¥o-Ya) | pghgva(Xy-Xs)

PghgUus(¥s¥y) L g (20)

BOUNDARY CONDITIONS

Zeroth order (constant) boundary conditions are applied in the
same manner for the FDM, FEM, or FIM.
Many first order boundary conditions may be expressed in terms

of the following general equation (see Figure 5 for notation).

au au -

— % a2 3y bo + b] u] + bzu2 + b3u3

4 ax (21)

For a FIM triangular cell 1t may be assumed that the distribution of u is -
linear in x and y. The partial derivitives may be obtained algebraically
from the midpoint-boundary values and the (x,y) location for the corners
of the cell. The following equations may be obtained by algebraic
manipulation of the assumed linear distribution with a midpoint-boundary
node triangular cell (similar relationships may be derived for a
rectangular cell).

au
ax = CqUp * Gy + Caug (22)

au
ay = Ca¥y * Cgup + Cgls (23)

]



14

¢, =y, - y,)/20 (24)
C, = (¥y3 - ¥,)/2D h (25)
Cy = (¥ - ¥5)/20 (26)
04 = (x1 - xz)/ZD (27)
CS = (XZ - x3)/2D (28)
Ce = (x5 - X,)/2D (29)
D= (xy¥; * X5¥3 * X3¥y - X¥3 = Xp¥q - Xg¥,)/4 (30)
Equations 21 - 30 ﬁgy' be wused to translate first order bouﬁdary

conditions into algebraic expressions. These then become additidnal
simultaneous equations to be added to the ensemble set.

BUILDING THE ENSEMBLE

With the FDM each governing equation for each cell, together
with the boundary conditions, 1is an independent equation. The FDM
ensemble 1is built from the simultaneous set of these independent
equations. The equations obtained for a single cell or boundary
condition, however, are not independent with the FEM. The FEM ensemble
is obtained by accumulating the gradient of the variational equation for
all of the cells and Egyndary conditions. The FIM ensemble 1s obtained
in the same manner éﬁf?he FDM. With the FDM and FIM, an independent
equation is obtained as each cell or boundary condition is considered,
whereas, with the FEM all adjacent cells must be considered to obtain a
single independent equation. This distinction between the FDM, FIM, and
FEM impacts the storage requirements and the solution technique. The FEM
equations cannot be solved cell-by-cell as in the case of the FDM and
FIM. The FEM requires concurrent storage of the entire set of
simultaneous equations representing the ensemble, whereas, the FDM and
FIM do not. When effecting an iterative solution, the FDM and FIM
equations may be computed cell-by-cell as needed. Other than reduced
storage this cell-by-cell solution with current update values may have
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significant advantage over methods where the set of equations is solved
before updating (see Section 13.1 of Ortega and Rheinboldt).

RELATIVE ADVANTAGES AND DISADVANTAGES OF THE METHODS

The FDM is typically the easiest of the three to develop. The
FIM 1is relatively simple to develop for certain cases such as when
Reynolds Transport is applicable. The FIM may require the use of Green's
Theorem or Stokes' Thegrem, making it more involved than the FDM. The
FEM is frequently taxThg to the engineer with a strong analytical
background. e

The FEM and FIM may be developed for triangular and tetrahedral
cells making these methods more attractive for applications having
irreqgular regions.

The FDM uses 1internal nodes, whereas, the FEM and FIM use
boundary nodes making the FEM and FIM more attractive in terms of
describing some boundary conditions.

The FIM uses midpoint nodes, which avoids the problem of
conflicting boundary conditions at corners encountered with the FEM.

When solving a second order equation, the FDM has a bandwidth of
five, the FEM has a bandwidth dependent on the number of nearest
neighbors (typically 8), and the FIM has a bandwidth of four making the
FIM the most advantagesg%}

The FEM requires concurrent storage of the entire set of
simultaneous equations in order to effect a solution. The FDM and FIM do
not require this concurrent storage and may be solved by the Gauss-Seidel
(point-by-point successive substitution) or similar point-by-point
methods (see Chapter 7 of Ortega and Rheinboldt) resulting in a
significant reduction of storage required compared to the FEM and some
advantage with nonlinear problems by virtue of current updating. The FEM
may also be solved by the Gauss-Seidel method, but without updating the
nonlinearities.
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CONCLUSIONS

The finite-integral method can be used to translate integral
equations 1into algebraic expressions in order to effect a numerical
solution. The FIM can be developed for several different shaped cells,
making it an attractive alternative to the finite-difference method for
irregular shaped regions. The FIM may be solved using current update
(point-by-point) methods, making it an attractive alternative to the
f‘in‘ite-e]erﬁent method for nonlinear problems and cases where storage is
1imited. The FIM is Telatively simple to develop for problems where
Reynolds Transport is applicable. The FIM should be added to the Tist=of
mathematical tools at the disposal of engineers.

by
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NOMENCLATURE

outward-normal control surface area vector
general extensive property

general intensive property

energy

force vector

x component of F

y component of F

“w X

Newton's constant

)

enthalpy

row index
column index
mass

reaction rate per unit mass

+ 0 I e - T w0 -5 = M M O @ xr

time

u x component of V

v y component of V

v velocity vector

X first spatial direction

y second spatial direction
third spatial erect1on

€ specific reacf}bn energy

P density

variational integral
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