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ABSTRACT 

 Development and utilization of a numerical model of the nitrogen supersaturation process is 

an important component of the Jennings Randolph project. A literature review was conducted 

and the model developed by the U. S. Army Corps of Engineers (USACE) Waterways 

Experiment Station (WES) was found to be the most promising. This model was developed by D. 

A. Geldert, J. S. Gulliver, and S. C. Wilhelms and presented in a paper entitled, "Modeling 

Dissolved Gas Supersaturation Below Spillway Plunge Pools," which appeared in the May 1998 

edition of the Journal of Hydraulic Engineering. 

INTRODUCTION 

 The WES model is based on elementary principles of fluid flow and mass transfer with 

empirical correlations providing closure. The model is zero-dimensional, that is, it does not 

subdivide the domain into elements and solve conservation equations within the elements. 

Application of the model, therefore, is limited to configurations similar to those used to develop 

the empirical correlations which provide model closure. The basic concept is that of a swarm of 

bubbles created by the plunging water rising to the surface and transferring nitrogen into the 

water in the stilling basin. Supersaturation can occur; because the bubbles are plunged downward 

into the water and experience greater than atmospheric pressure due to the hydrostatic pressure of 

the receiving water. 

The Original WES Model 

 Geldert et al. (1998) report that first predictive model for dissolved gas levels downstream of a 

spillway was developed by Roesner and Norton (1971). They began with a simple mass transfer 

model that can be expressed as Equation 1: 

 e ) C -C( -C = C
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where Cd is the downstream concentration, Cs is the saturation concentration, Cu is the upstream 

concentration, K is the mass transfer coefficient, and t is the residence time in the stilling basin. 

This equation forms the basis of the WES model. 

 Hibbs and Gulliver (1997) utilized Equation 2 in computing the effective saturation 

concentration, Ce: 
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where Cs is the saturation concentration (taken to be 100%), de is the effective bubble depth, γ is 

the specific weight of water, and Pa is the atmospheric pressure. Geldert et al. (1998) provide 3 field 

data sets: Ice Harbor, The Dalles, and Little Goose. The measured effective saturation 

concentrations and the values computed using Equation 2 are shown in Figure 1. 
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Figure 1. Computed and Measured Effective Saturation Concentration 

 The effective depth is computed from the bubble half-life depth (i.e., the length traveled over 

the half-life), hb, by Equation 3: 
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(3)where β is an empirical constant equal to 2.2, 

stilling basin. The bubble half-life depth is computed from the discharge per unit width, q, and the 

bubble rise velocity, vr (presumed be constant at 0.25 meters/second), by Equation 4. 
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 Geldert et al. (1998) reasoned that the mass transfer included a bubble component into the water 

and a surface component out of the water. The rate of change of the concentration, C, is then given 

by Equation 5: 
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ssLebL (5)where KL is the mass transfer coefficient, ab
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where tb is the residence time for the bubbles and ts is the exposure time for the surface transfer. 

Geldert et al. (1998) presumed that the combination KLasts would be a dimensionless constant on 

the order of 1 for any particular application. 

 The void fraction, φ, is computed using Equation 7 
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where λ is an empirical constant on the order of 0.2 meters and vj is the effective velocity of the 

plunging jet of water. Geldert et al. (1998) did not provide a means of obtaining vj, simply stating 

that this was "computed by a standard water surface profile technique." Geldert et al. (1998) used 

the void fraction and an empirical correlation to obtain the dimensionless bubble transfer group, 

KLabtb, given by Equation 8. 
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where α is an empirical constant on the order of 1, We is the Weber number (Equation 9), Rq is the 

Reynolds number for the flow (Equation 10), Sc is the Schmidt number for air/water (Equation 11), 

and Rr is the Reynolds number for the rising bubbles (Equation 12). 
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where ρ is the density of water, σ is the surface tension, and dj is the effective depth of the plunging 

jet (dj=q/vj). 
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where υ is the kinematic viscosity of water. 
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where D is the air/water diffusion coefficient. 
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The Modified WES Model 

 The original WES model lacks an explicit calculation for the plunging jet velocity, vj. In order 

to fill this gap in the model, a computer program was developed to "back out" the jet velocity 

implied by the data points for the 3 sites given in the WES report. These values were then compared 

to all of the dimensionless quantities, which can be formed from the site parameters. The best 

correlation obtained (r
2
=0.92) is given in Equation 13 and illustrated in Figure 2. 
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Figure 2. Dimensionless Correlation for Jet Velocity 
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where g is the gravitational acceleration and ht is the total (effective) head. 

 The bubble transfer group, KLabtb, can then be computed from Equation 8 and this correlation 

for the jet velocity (Equation 13). The results are illustrated in Figure 3. 
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Figure 3. Bubble Transfer Group 

 This same model can be applied to the Jennings Randolph site. The data and model results for 

all 4 sites are illustrated in Figure 4. 

 
Figure 4. Data and Model Results for 4 Sites 
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Model Limitations 

 As stated previously, this is a zero-dimensional empirical model. The Modified WES Model is 

significantly different than a one-, two-, or three-dimensional finite difference or finite element 

model in which the domain is subdivided into computational cells. Any direct applications of this 

model are limited to the variables which appear in the various equations, for instance, a single 

value must represent the depth of the stilling basin, hs. If the depth of the stilling basin changes 

significantly over its length, this model will only accommodate a single number for the average or 

effective depth. If diverters or partitions are present in the stilling basin, there is no direct way to 

account for these in this model. There is also no direct way to account for such things as turbulence 

enhancers. The equations could be modified to account for some changes in the basic configuration 

on which the model is based; but such modifications would require some theoretical basis and 

experimental data or some established scaling law. Large changes to the configuration, such as 

weirs, would require at least an additional model and are likely inherently incompatible with the 

Modified WES Model. The decision to use a zero-dimensional empirical model for this project 

was made during contract negotiations; as a multi-dimensional model would have required a 

significantly greater budget. Any multi-dimensional modeling would be outside the current scope 

of work. 

Modular Modeling 

 The only way to incorporate the impact of structures such as weirs is to subdivide the domain 

into modules. The model must already be subdivided into the stilling basin module and the 

downstream module. The same equation for surface mass transfer is used for the stilling basin and 

the downstream modules; so this subdivision does not represent a second model. An aeration weir 

is modeled by inserting a weir module between the stilling basin and the downstream module. The 

coupling of these modules is limited to their impact on the inlet conditions to the next model, that 

is, the exit conditions from the stilling basin module become the inlet conditions to the weir 

module; and the exit conditions from the weir model become the inlet conditions to the downstream 

module. 

The Downstream Module 

 The concentration downstream of the stilling basin is modeled using the surface mass transfer 

component only from the stilling basin model. This can be expressed as Equation 14. The 

agreement of the Downstream Module with field data is shown in Figure 5. This figure shows 

computed vs. measured concentrations. Data taken at Barnum are indicated by circles and data 

taken at Blue Hole are indicated by triangles. Points falling on the diagonal solid line would 

indicate exact agreement between the model and data. Points falling below the diagonal solid line 

indicate a model prediction less than the measured value. Points lying above the diagonal solid line 

indicate a model prediction greater than the measured value. The 95% confidence interval is 

indicated by the two diagonal dotted lines. This interval is a statistical measure of the accuracy of 

the Downstream Module and is equal to ±3.1%. This means that 95 out of 100 data points should 

be within 3.1% of the corresponding calculated value. 

 ( )( )e -1C -C +C = C
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Figure 5. Agreement of Downstream Module and Field Data 

The Weir Module 

 The aeration weir is also a zero-dimensional model. A single value of effectiveness is used. The 

effectiveness is expected to change with flow. The concentrations upstream and downstream of the 

aeration weir are related by Equation 15. 

 ( )C -C  +C = C usud ε  (15) 

where ε is the effectiveness. The range of ε is zero to one, where zero would mean no effect and 

one would be complete approach to saturation. 

RESULTS 

 The Model can now be used to predict the impact on downstream supersaturation of changes in 

the basic geometry of the stilling basin. Figure 6 shows the impact of increasing or decreasing the 

depth of the stilling basin by a factor of 2. Also shown in Figure 6 are the predicted concentrations 

for a discharge of 6300 CFS (i.e., the largest operating point in the field data set). The Model 

predicts a saturation at the downstream end of the stilling basin of 125.6%. The Model also predicts 

that this value would increase to 128.1% if the depth of the stilling basin were doubled and decrease 

to 121.5% if the depth of the stilling basin were half of its current value. Figure 6 also shows the 

maximum discharge such that the saturation is no more than 110%. The predicted value is 

approximately 1420 CFS, 1260 CFS, and 1210 CFS, respectively, for the 3 cases. While this 
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change is not insignificant, it is insufficient to ameliorate the problem and still allow for a 

reasonable operating range. 

 
Figure 6. Impact of Stilling Basin Depth 
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 Figure 7 shows the predicted impact of river depth at the end of the stilling basin on saturation. 

As seen in this figure model predictions indicate that any modification of the river depth at this 

point would provide no benefit within the operating range. 

 
Figure 7. Impact of River Depth 
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 Figure 8 shows the predicted impact of the length of the stilling basin on saturation. As was the 

case with a change in river depth, model predictions indicate that any modification of the stilling 

basin length would provide no benefit within the operating range. 

 
Figure 8. Impact of Stilling Basin Length 
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 The Model does not accommodate a direct calculation for the impact of a deflector; however, 

this impact is estimated by limiting the effective bubble depth, de, which is an intermediate 

calculated parameter in the model, to some maximum plunge depth, dp. The energy dissipated in the 

stilling basin would be the same whether or not a deflector were present. If the plunging water were 

deflected, one would expect greater turbulence in the stilling basin. In order to make some 

accommodation for this increased turbulence, the mass transfer coefficient, KL, is increased by the 

same factor as the plunge depth is decreased. The results of these calculations are shown in 

Figure 9. 

 
Figure 9. Impact of Limited Plunge Depth 

 These calculations must be considered an estimate and cannot be ascribed the same level of 

confidence as the basic model calculations. Figure 9 shows the model predicts that the greatest 

impact of limiting the plunge depth would be realized at discharges beyond the operating range. 

Figure 9 also shows that there may be a slight increase in supersaturation for low discharges were 

the plunge depth limited to one-half of its current value and a decrease in supersaturation were the 

plunge depth limited to one-fourth of its current value. This can be seen in Figure 9 by noting that 

the green dotted line (labeled dp/2) is slightly above the solid blue line (labeled dp); and the red 

chained line (labeled dp/4) is noticeably below the solid blue line where the lines intersect 

Cd=110%. This seemingly anomalous impact at low discharge should not be considered significant; 

as this difference is less than the reasonable accuracy of the Model. The impact of limiting the 

plunge depth is clearly evident for larger discharges. Also shown on Figure 9 are the discharges 

corresponding to a saturation of 110%. The Model indicates that limiting the plunge depth to one-
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fourth of its current value would only increase the operating range from 1260 CFS to 1610 CFS, so 

as to not exceed 110% saturation. While this change is not insignificant, it is also insufficient to 

ameliorate the problem and still allow for a reasonable operating range. 

 A Composite Model is used to estimate the impact of an aeration weir on downstream 

saturations. The basic Model (Equations 2 through 13) plus the Weir Module (Equation 15) plus the 

Downstream Module (Equation 14) can be used to estimate the saturation at any distance 

downstream. Figure 10 shows the computed concentrations at a distance 3 miles downstream. The 

aeration weir effectiveness, ε, is varied from 0 (or no weir), to 0.5 (a 50% effective weir), and 0.75 

(a 75% effective weir). Of course, a completely effective weir (ε=1) would eliminate all 

downstream supersaturation. Figure 10 shows that no weir is required (ε=0) in order to keep 

saturation levels at or below 110% for discharges up to 3520 CFS. A 50% effective weir (ε=0.5) 

would allow operation up to 8400 CFS without exceeding 110% at a distance 3 miles downstream. 

A 75% effective weir (ε=0.75) would allow operation at any discharge without exceeding 110% at 

a distance 3 miles downstream. The Model indicates that operation above 2400 CFS will result in 

saturations exceeding 110% at Barnum unless an aeration weir is installed. This saturation would 

be reached at Blue Hole for discharges exceeding 3180 CFS. If a 50% effective weir were installed, 

the discharge could reach 3620 CFS before the saturation would exceed 110% at Barnum and could 

reach 7800 CFS before the saturation would exceed 110% at Blue Hole. A 75% effective weir 

would allow any discharge without exceeding a saturation of 110% at Barnum or Blue Hole. 

 
Figure 10. Computed Concentration 3 Miles Downstream 
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CONCLUSIONS 

 A modified version of the WES model for dissolved gas supersaturation below spillway plunge 

pools was used to predict the impact of various changes to the stilling basin and adjacent river bed 

on supersaturation. The Model was first calibrated using field data and then utilized to estimate the 

impacts. The Model predicts that only a slight benefit would be gained by reducing the depth of the 

stilling basin to one-half of its current value. The Model predicts that no benefit would be gained 

within the operating range by reducing the depth of the river at the end of the stilling basin to one-

half of its current value. The Model predicts that no benefit would be gained within the operating 

range by doubling the length of the stilling basin. The Model predicts that only a slight benefit 

would be gained within the operating range by installing a deflector to limit the plunge depth to 

one-fourth of its current value. In summary, none of these four modifications would provide the 

desired benefit of reducing the saturation level at the end of the stilling basin to no more than 110% 

over any significant portion of the operating range. The Model predicts that a 50% effective 

aeration weir would allow discharges up to 2400 CFS without exceeding a saturation of 110% 

downstream at Barnum or Blue Hole. The Model predicts that a 75% effective aeration weir would 

allow any discharge without exceeding a saturation of 110% downstream at Barnum or Blue Hole. 

Nothing short of an 85% effective aeration weir would keep the saturation levels at or below 

110% between the weir and Barnum. 

SYMBOLS 

ab bubble transfer area per unit volume [area/volume] 

as surface transfer area per unit volume [area/volume] 

Cd downstream concentration [%] 

Cs saturation concentration [%] 

Ce effective saturation concentration [%] 

Cu upstream concentration [%] 

D diffusion coefficient [length
2
/time] 

de effective bubble depth (Equation 3) [length] 

dj plunging jet depth [length] (dj=q/vj) 

dp maximum plunge depth [length] 

g gravitational acceleration [length/time
2
] 

h1 effective bubble depth in the stilling basin (Equation 3) [length] (h1=2hs/3) 

h2 ffective bubble depth in the river (Equation 3) [length] (h2=hr/2) 

hb bubble half-life depth (Equation 4) [length] 

hr river depth [length] 

hs stilling basin depth [length] 

ht otal (effective) head [length] 

KL mass transfer coefficient [length/time] 

Ls length of the stilling basin [length] 

Pa atmospheric pressure (Equation 2) [force/area] 

Q discharge [volume/time] 

q discharge per unit width [volume/length/time] 

Rq Reynolds number for the flow (Equation 10) [dimensionless] 

Rr Reynolds number for the rising bubbles (Equation 11) [dimensionless] 

Sc Schmidt number for air/water (Equation 12) [dimensionless] 

tb bubble transfer duration [time] 
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ts surface transfer duration [time] 

vj plunging jet velocity (Equation 13) [length/time] 

vr bubble rise velocity (assumed to be 0.25 meters/second) [length/time] 

We Weber number (Equation 9) [dimensionless] 

 

greek 
α empirical coefficient (Equation 8) [dimensionless] 
β empirical coefficient (Equation 3) [dimensionless] 
γ specific weight of water [force/volume] 
ε effectiveness (Equation 15) [dimensionless] 
λ empirical coefficient (Equation 7) [length] 
υ kinematic viscosity of water [length

2
/time] 

ρ density of water [mass/volume] 
σ surface tension [force/length] 
φ void fraction (Equation 7) [dimensionless] 
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