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ABSTRACT 

 A model is developed for the transport of PCBs in a sorbing and retarding finite porous 

medium. The model is transient and one-dimensional. Both diffusion and simple advection are 

modeled. The model utilizes statistical measures of grain size in the medium. 

NOMENCLATURE 

C concentration [moles/m³] 

C0 initial concentration [moles/m³] 

Ca aqueous (porewater) concentration [moles/m³] 

Cm concentration in porous medium [moles/m³] 

CX maximum concentration over time [moles/m³] 

D diffusion coefficient [m²/sec] 

Da diffusion coefficient for the contaminant in water 

Dm diffusion coefficient for the contaminant in the porous medium 

F probability distribution function [dimensionless] 

G grain size G=log(2R) [log(mm)] 

GM mean grain size [log(mm)] 

H hydraulic head [m] 

J flux [moles/m²/sec] 

kH hydraulic conductivity [m/sec] 

kT thermal conductivity [W/m/°C] 

L length of contaminated zone [m] 

Li thickness of the isolation layer 

P cumulative probability [dimensionless] 

QH hydraulic (fluid) flux [m³/m²/sec] 

QT thermal (heat) flux [W/m²] 

r radial distance from center [m] 

R distance along x to reflection or radius [m] 

T temperature [°C] 

t time [sec] 

tX time at which maximum concentration occurs [sec] 

V advective velocity [m/sec] 

x spatial location [m] 

Greek 
ε porosity 

ℜ retardation factor 
σ standard deviation of grain size [log(mm)] 
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INTRODUCTION 

 Modeling of the transport of contaminants in groundwater has many applications. 

Groundwater systems are often quite complex; and many sophisticated numerical models are 

available. A sophisticated numerical model is not always practical or necessary. A simplified 

approach may provide sufficient information for management strategies or provide a basis for the 

selection of a sophisticated numerical model. A simplified approach based on transient one-

dimensional diffusion in a finite medium is expanded to incorporate statistical measures of grain 

size in the medium and simple advection. 

MODEL DEVELOPMENT 

 The model is developed beginning with the most simple concept of diffusion in an 

infinite Cartesian coordinate system and then transformed into a semi-finite Cartesian coordinate 

system. The length of the finite sub-domain is found to be critical. The model is then transformed 

from Cartesian coordinates to spherical in order to model granular media. The distribution of 

grain size is also included. The transport is separated into two distinct processes: diffusion and 

advection. The intra-grain sorption process is assumed to be diffusion-dominated; whereas, the 

inter-grain transport is assumed to be advection-dominated. In this model diffusion limits how 

much of the contaminant is available for advection. Contaminated sediment is modeled as a 

distributed source. The model is first developed without consideration of saturation or 

competition for receptor sites, which would be a worst-case scenario; as both of these effects 

would tend to diminish down-gradient concentration. Saturation and competition for receptor 

sites will be added subsequently. 

1D Transient Diffusion in an Infinite Medium 

 The simplest model for contaminant transport would be one-dimensional transient 

diffusion in an infinite medium having uniform properties. The governing partial differential 

equation for mass transfer is given by Equation 1 

 
∂C

∂t
=

∂

∂x







D
∂C

∂x
 (1) 

where C is the concentration, D is the diffusion coefficient, t is time, and x is the spatial location. 

For the purposes of this development, the medium will be divided at x=0. At time, t=0, the 

medium for x<0 is initially contaminated with a uniform concentration of C=C0, and for x>0 

with a uniform concentration of C=0. The medium extends infinitely far along x. The solution to 

this problem is given by Equation 2. 

 C(x,t)=
C0

2
erfc





x

2 Dt
 (2) 

 Here erfc() is the complimentary error function. This solution is shown in Figure 1 for a 

range of times and locations for a diffusion coefficient, D=1. 
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1D Transient Diffusion in a Semi-Finite Medium 

 It is clear from Equation 2 and Figure 1 that the ultimate profile at infinite time is a 

uniform concentration of 0.5. The initially contaminated medium for all x<0 constitutes an 

infinite source; whereas, the initially uncontaminated medium for all x>0 constitutes an infinite 

sink. Practical applications must consider a finite source. As the one-dimensional transient 

diffusion equation for an infinite medium having uniform properties is linear, the solution for a 

finite medium can be constructed using superposition. The actual medium is approximately semi-

finite, that is, the initially contaminated zone is finite and the initially uncontaminated zone is 

infinite. In this case the applicable superposition is a reflection at x=±R. This makes the initial 

concentration, C=0 for x<-R, C=C0 for -R<x<R, and C=0 for x>R. The superimposed solution is 

given by Equation 3. Concentration profiles at various times predicted by Equation 3 are shown 

in Figure 2, where C0=1 and R=3. 

 C(x,t)=
C0

2 



erfc





x-R

2 Dt
- erfc





x+R

2 Dt
 (3) 

 Figure 2 shows the peak concentration, which is always at x=0, diminishing with time 

and the concentration profile flattening out as the finite initial contamination diffuses out into the 

infinite medium. Another result of this modification is illustrated in Figure 3. Figure 3 shows the 

concentration at a single point, x=2, over time. The concentration predicted for an infinite source 

(Equation 2) is shown by the dotted curve. The concentration predicted for a finite source 

(Equation 3) is shown by the solid curve. The infinite source solution does not exhibit a 

maximum; instead, it asymptotically approaches C=0.5. The finite source solution exhibits a 

clear maximum. The timing and magnitude of the maximum is of particular interest when 

considering contaminant transport. Both are dependent on the distance to the reflection, R, or the 

effective length scale of the contaminated medium. 

 The time corresponding to the maximum concentration can be found by differentiating 

Equation 3 with respect to time and solving for the root, as in Equation 4. The root of Equation 4 

is given by Equation 5. The maximum concentration over time is then found by using this value 

in Equation 3. 

 xe





-x2

4Dt =(x+R)e





-(x+R)2

4Dt  (4) 

 tX=
R(2x+R)

4Dln






x+R

x

 (5) 

 The maximum concentration and corresponding time are shown in Figures 4 and 5, 

respectively, for a range of Rs. These figures show that the reflection distance, R, or the effective 

length scale of the contaminated medium has considerable impact on the maximum concentration 

and corresponding time. This is why accurate characterization of the medium is critical in 

developing contamination management strategies. 
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Transformation to Spherical Coordinates 

 Treating the initially contaminated medium as a monolithic slab results in the largest 

maximum concentration and the longest time to reach that maximum concentration. A more 

realistic model for the initially contaminated medium is one composed of variably-sized spheres 

whose distribution of diameters can be described statistically. The governing partial differential 

equation for transient diffusion in spherical coordinates is given by Equation 6. 

 
∂C

∂t
=

1

r2

∂

∂r







r2D
∂C

∂r
 (6) 

 Here r is the radial distance from the center of the grain. The solution to Equation 6 can 

be expressed by an infinite series, Equation 7. 

 

C(r,t)=serfc




r

2 Dt

serfc(s)=1-s+
s3

6
-

s5

30
+

s7

168
-

s9

1080
+

s11

7920
-

s13

65520
+

s15

604800
-

s17

6168960
+...

 (7) 

 The infinite series in Equation 7 might be referred to as the complementary spherical 

error function. Superposition can then be used to create the correct boundary equations, arriving 

at Equation 8. Figure 6 shows the same calculations as Figure 2, except corrected for spherical 

spreading. 

 C(r,t)=
C0

2 



serfc





r-R

2 Dt
-serfc





r+R

2 Dt
 (8) 

 Figure 7 shows the concentration over time at two locations each for the Cartesian and 

spherical equations, respectively. The dotted curve is the Cartesian solution at X=0; and the solid 

curve is the spherical solution at R=0. These two curves begin at the same concentration, C0; but 

the concentration for the spherical solution drops off much more rapidly due to spreading. The 

dashed curve is the Cartesian solution at X=2; and the chain curve is the spherical solution at 

R=2. These curves also begin at the same point, with the spherical curve dropping off sharply. In 

both cases the curves at the two locations asymptotically merge; because this small separation 

distance becomes trivial as the diffusive front advances; and the respective concentration profiles 

flatten. The trends shown in Figure 7 are consistent with Treybal's Figure 4.2 curves for a slab 

and a sphere, reproduced here as Figure 8. The horizontal axis in Figure 8 is equivalent to Dt/R
2
, 

or the inverse square of the term inside the error function. The vertical axis in Figure 8 is 

normalized concentration. The curves appear similar when Figure 8 is rotated 90° clockwise and 

flipped over. 

Distributed Grain Sizes 

 Figures 4 and 5 show that the maximum concentration and the time to reach that 

maximum depends on the grain radius. The model for the sorption process accounts for the 
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variation with grain size through Equation 8. It is assumed that the distribution of grain sizes can 

be approximated through statistical means. Figure 9 shows grain diameter vs. probability for 8 

samples taken from the same area. Significant variability is evident even between samples taken 

in close proximity. This variability contributes to the uncertainty of the results. 

 A normal probability distribution produces a straight line on a probability axis scale as 

constructed in Figure 9. The value where the curve intersects a probability of 0.5 is the mean. 

The slope of the line is always positive and proportional to the standard deviation. The normal 

probability distribution function is given by Equation 9. 

 F(G)=
e-

1

2



G-G

M

σ

2

σ 2π
 (9) 

 Where GM is the mean grain size, σ is the standard deviation, and F(G) is the probability 

distribution of grain size G. The cumulative probability, or the axis in Figure 9 labeled 

Probability Less Than, for some grain size, G, is the integral of the probability distribution from 

-∞ to G, or Equation 10, which can be resolved to the error function. 

 P(G)=

G

∫
-infinity

e-
1

2



G-G

m

σ

2

σ 2π
dG=

1

2









1+erf








G-GM

σ 2
 (10) 

 Where P(G) is the cumulative probability of grain size G. A best-fit normal probability 

distribution is obtained for Sample 8 with a mean grain size of 0.30 mm (note: 0.30=10
-0.53

) and 

a log standard deviation of 0.79, as shown in Figure 10. 

Distributed Concentration 

 Equation 6 with uniform properties is linear; therefore, a statistical composite 

concentration involving many grains can be constructed by superposition using Equation 8. The 

result is given by Equation 11, which must be integrated numerically. 

 C(r,t)=
C0

2

infinity

∫
-infinity

e-
1

2



G-G

M

σ

2

σ 2π
 




serfc





r-R

2 Dt
-serfc





r+R

2 Dt
dG  (11) 

 Equation 11 forms a basis for analyzing practical problems of diffusion in granular 

porous media. The Sample 8 grain size data are used as an example (cf. Figure 9). The mean 

grain size is 0.30 mm, making the mean radius 0.015 cm. A typical diffusion coefficient of 

0.00001 cm/sec is used. Figure 11 is obtained using a grain size standard deviation of 0.079. The 

profiles in Figure 11 are quite similar to those in Figure 2, which is the slab results. This is an 

important check on the asymptotic behavior of Equation 12. If the grain size is relatively large 

and the standard deviation is relatively small (i.e., nearly uniform grains), compared to the 

diffusion coefficient and characteristic time, Equation 11 should approach the slab result, or 

Equation 3, which it does. 
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 If the grain size standard deviation is increased to 0.79, a significant change in the shape 

of the profiles can be seen, as illustrated in Figure 12. Increasing the grain size standard deviation 

increases the fraction of smaller and larger diameter grains relative to the mean. The contribution 

of the smaller grains to the integrated concentration is a more rapid decrease at the center; as the 

relative distance from the source is much larger. The contribution of the larger grains is to hold 

the concentration up farther away from the center; as the part of the concentration profile plotted 

is still deep within the large grains. Mass is conserved, thus, the area under each curve when 

weighted by the radius squared is the same. As more smaller grains pull the profiles down toward 

the center and more larger grains stretch the profiles out, a different shape is obtained (Figure 12) 

as the radial effects dominate. 

Simple Advection 

 Advection is the transfer of mass due to the presence of a flow through the medium, in 

this case, porewater. Up to this point there has been no distinction between transport through the 

medium proper and transport through the flowing porewater. These will be distinguished by the 

subscripts m and a for medium and aqueous, respectively. Equation 1 can be modified to account 

for simple one-dimensional advection, resulting in Equation 11. 

 
∂Ca

∂t
=Da

∂
2Ca

∂x2 -
V

ℜ

∂Ca

∂x
 (12) 

where V is the advective velocity and ℜ is the retardation factor. The complete solution to 

Equation 12, which can be found using Laplace transforms, is given by Equation 13. 

 Ca=
C0

2 
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ℜ
x
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X+

V

ℜ
t
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 (13) 

 For typical property and dimensional values, the second term in Equation 13 is negligible. 

Neglecting this term results in a simplified solution for advection that is a slight modification to 

the solution for pure diffusion, Equation 2, of adding the term Vt/ℜ . This same modification can 

be made to Equations 3, 9, and 11. 

Diffusion vs. Retardation 

 Diffusion is the transfer of mass due to the presence of a concentration gradient. 

Mathematical analysis of this important mass transfer process is based on Fick's Law of 

Diffusion, Equation 14. Equation 14 relates the flux, J, the gradient of the concentration, C, and 

the diffusion coefficient or diffusivity, D. The units of flux are moles per area per time (e.g., 

[moles/m²/sec]). The units of concentration gradient are moles per volume per length (e.g., 

[moles/m
3
/m]). The units of diffusivity are length-squared per time (e.g., [m²/sec]). 

 J=-D
∂C

∂x
 (14) 



Modeling Transport of PCBS in a Sorbing and Retarding Medium page 7 

 

 It is important to note that Equation 14, or Fick's Law, defines diffusivity, in exactly the 

same manner as Fourier's Law, Equation 15, defines thermal conductivity and Darcy's Law, 

Equation 16, defines hydraulic conductivity. Each of these coefficients are experimentally 

determined by measuring the molar flux and concentration gradient, heat flux and temperature 

gradient, and fluid flux and hydraulic gradient, respectively. 

 QT=-kT

∂T

∂x
 (15) 

 QH=-kH

∂H

∂x
 (16) 

 In order to determine thermal conductivity, kT [W/m/°C], one measures the heat flux, QT 

[W/m²] and the gradient of the temperature, ∂T/∂x [°C/m]. The ratio of heat flux to temperature 

gradient is the thermal conductivity by definition. In order to determine the hydraulic 

conductivity, kH [m/sec], one measures the fluid flux, QH [m
3
/m²/sec] and the hydraulic gradient, 

∂H/∂x [m/m]. The ratio of fluid flux to hydraulic gradient is the hydraulic conductivity by 

definition. In order to determine the coefficient of diffusion, D [m²/sec], one measures the molar 

flux, J [moles/m²/sec] and concentration gradient, ∂C/∂x [moles/m
3
/m]. The ratio of molar flux 

to concentration gradient is the diffusivity, D [m²/sec], by definition. 

 Equation 14 can be combined with the principle of the conservation of chemical species 

to form an expression for the time rate of change of the concentration, or the partial differential 

equation for transient molecular diffusion, Equation 1. Equation 14 defines the diffusivity; 

therefore, Equation 1 can also be used to experimentally determine the diffusion coefficient in a 

system where there is no advection. One need only measure the rate of change of the 

concentration, ∂C/∂t [moles/m
3
/sec], and the gradient of the concentration gradient, ∂²C/∂x² 

[moles/m
3
/m²]. The ratio of these two quantities is the diffusivity, D [m²/sec], by definition. 

 Retardation is an advective phenomenon. The retardation factor is an empirical correction 

to account for an apparent time lag in the advancement of a specific substance through a specific 

medium. The physical phenomenon thought to be responsible for retardation is a temporary 

attachment of the advecting contaminant to the medium at the molecular scale. This explanation 

for retardation requires the presence of receptor sites in the medium that accommodate the 

contaminant. If there is no porous medium, then there can be no retardation. If there are no 

accommodating receptor sites in the porous medium, then there can be no retardation. According 

to this conceptual model for retardation the contaminant molecules are removed from the 

porewater and attach themselves to receptor sites in the medium, leaving less contaminant in the 

porewater as it flows through the medium. When the receptor sites are filled, the addition of one 

contaminant molecule forces another back into the porewater, resulting in an apparent time lag. 

 Retardation results from the attachment and detachment of individual contaminant 

molecules between the porewater and receptor sites in the porous medium. Retardation does not 

occur within the porewater or the porous media, per se, as is the case with diffusion. Retardation 

and diffusion are two separate processes operating simultaneously. Retardation is an advective 

phenomenon. Advection is subject to retardation; whereas diffusion is not. 
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Problematic Lack of True Properties 

 Several problems arise in the application of these principles and equations to real-world 

transport of contaminants, which exhibit large retardation factors or very slow migration rates. 

This is the lack of true properties. A carefully controlled laboratory experiment is necessary to 

measure true diffusive properties. There must be no advection present in order to measure the 

diffusion coefficient. Constructing the experimental apparatus is further complicated by the 

necessity of having an undisturbed layer of the target porous media through which to measure the 

advance of the target contaminant. The diffusion of PCBs through silt is very slow, which means 

the experimental conditions must be maintained over a long period of time, perhaps years, even 

decades. The advective transport rate and retardation factor can be measured much more easily, 

provided that the diffusion is negligible -- an assumption that requires accurate diffusion data in 

order to justify. Under such idyllic conditions the hydraulic conductivity and retardation factor 

could be inferred from field data by tracking the center of mass of a finite point source (i.e., a 

single spill) containing a species that is not retarded along with the target species that is retarded. 

Measurement of these field data may also require years of collection. 

 What seems to be the conventional way of obtaining properties for use in analyzing the 

transport of PCBs in groundwater, is to estimate these from properties of totally different 

substances in solvents different from water and applying rules of thumb. This practice is 

questionable and introduces the possibility of errors, not in mere percent, but in orders of 

magnitude. If these rules of thumb are based on actual data, then why not use the real data? If the 

rules of thumb are not based on actual data, then there is no basis on which to validate the 

properties obtained by using them. This situation is further complicated in that retardation may 

have been incorrectly assumed in the process of generating the rules of thumb. In order to be 

consistent when using a diffusion coefficient that somehow erroneously included retardation, that 

same retardation factor must be rolled back into the calculations; but doing so must not be used 

as a justification that diffusion is subject to retardation, which is clearly an advective 

phenomenon. 

Retardation and Conservation of Mass 

 The rate of increase of the contaminant in the porous medium is equal to the flux of 

contaminant into the medium less the flux leaving the medium. The governing partial differential 

equation for the aqueous concentration, Ca, is given by Equation 12. Conservation of mass 

requires that the partial differential equation for the corresponding process in the porous medium, 

Cm, in the presence of retarded advection be given by Equation 17: 

 
∂Cm

∂t
=Dm

∂
2Cm

∂x2 -
V

(1-ε)







1-
1

ℜ

∂Ca

∂x
 (17) 

where ε is the porosity. As the retardation factor, ℜ, approaches 1, there is no retardation and no 

accumulation of the contaminant in the porous medium. As the retardation factor approaches 

infinity, all of the contaminant leaves the porewater and fills the receptor sites in the porous 

medium. As the porosity approaches 0, all of the volume is available as the porous medium. As 
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the porosity approaches 1, the porous medium occupies none of the total volume; thus, any 

presence of a contaminant would correspond to an infinite concentration. This uptake of 

contaminant from the porewater into the porous medium by virtue of retardation is often 

neglected. Equation 17, by the conservation of mass, requires that the concentration of the 

contaminant in the porous medium must rise proportional to the retardation factor and inversely 

proportional to the porosity. An entering porewater concentration of 0.009 ppm, a retardation 

factor of 30,000, and a porosity of 0.3 could produce a concentration in the porous medium of 

over 900 ppm. If there were indeed sufficient receptor sites in the porous medium to produce 

such a retardation effect, the eventual concentration in the porous may exceed the original 

contaminant level. Retardation depends on available receptor sites; therefore, the retardation 

factor must vary with concentration. A value that might be appropriate at low concentrations may 

be inappropriate at high concentrations. Whether the contaminant could subsequently leave the 

receptor sites in the porous medium and re-enter the porewater would depend on the species and 

conditions. If in addition to the contaminant entering via the porewater, contaminant is initially 

present in the porous medium, the diffusion associated with contaminant source would add to the 

concentration within the porous medium resulting from retardation. As all of the simplified 

governing equations have been linear, this effect can be superimposed to obtain the total. 

APPLICATION 

 An example is given to illustrate the magnitude of the quantities involved. Consider the 

case where the thickness of the isolation cap, Li, is 2 feet, the advective velocity, V, is 100 ft/yr, 

the initial (entering) concentration in the porewater, C0, is 0.009 ppm, the porosity, ε, is 0.3, both 

diffusion coefficients, Da and Dm, are 0.034 ft²/yr, and the retardation factor, ℜ, is 100. Equation 

1 can be solved analytically; however, Equation 17 has no known [yet] analytical solution; 

therefore a numerical solution will be used. For the numerical solution, 500 elements are used 

and 84,660 time steps are taken. Figure 13 shows the concentration in the porewater over time at 

the end of the isolation cap as computed analytically and numerically. This comparison is made 

in order to check the accuracy of the numerical solution. Figure 14 shows the concentration in the 

porewater throughout the cap at 1.46 years. Again the analytical and numerical solutions are 

shown for comparison. The dramatic impact of retardation on the concentration of the 

contaminant accumulating at the receptor sites within the porous media is shown in Figures 15 

and 16. Figure 15 shows the concentration in the porewater (the dotted curve) and porous 

medium (solid curve) over time at the end of the isolation cap. Note that the concentration scale 

for Figures 15 and 16 are much greater than for Figures 13 and 14. Figure 16 shows the 

concentration throughout the cap at 1.46 years. 

CONCLUSIONS 

 The figures in the application do not include any non-aqueous phase diffusion through the 

cap due to initial contamination of the porous medium underlying the cap. These calculations 

were made with a retardation factor of 100. The impact would be 300 times as great were the 

retardation factor 30,000. These results should not be surprising. The whole purpose of extraction 

systems is to remove the contaminant from the water and accumulate a high concentration in the 

extraction medium. When most of the receptor sites are filled, the medium is replaced and the 
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contaminated medium disposed of. If an in-situ isolation cap is used to prevent a contaminant 

from escaping and retardation is the operative mechanism, by the time the retarded front reaches 

the end of the cap it could be contaminated to a level requiring it to be removed and treated as 

hazardous waste. 
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Figure 1. Concentration Profiles for Infinite Medium 
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Figure 2. Cartesian Concentration Profiles for Semi-Finite Medium 
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Figure 3. Concentration at a Point over Time 
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Figure 4. Maximum Concentration vs. Reflection Distance 



Modeling Transport of PCBS in a Sorbing and Retarding Medium page 15 

 

 

Figure 5. Time of Maximum Concentration vs. Reflection Distance 
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Figure 6. Spherical Concentration Profiles at Various Times 
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Figure 7. Cartesian and Spherical Concentration at Two Points over Time. 
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Figure 8. Unsteady-State Diffusion after Treybal 
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Figure 9. Measured Grain Size Probability for 8 Samples 
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Figure 10. Best Fit Normal Probability Distribution for Sample 8 
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Figure 11. Statistically Averaged Spherical Concentration Profiles for σ=0.079 
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Figure 12. Statistically Averaged Spherical Concentration Profiles for σ=0.79 
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Figure 13. Porewater Concentration History at X = 2 Feet 
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Figure 14. Porewater Profile at T = 1.46 Years 
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Figure 15. Porous Medium History at X = 2 Feet 
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Figure 16. Porous Medium Profile at T = 1.46 Years 


