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ABSTRACT 

 

A method is presented by which chemical reactions can be 

conveniently expressed and automatically decomposed into the 

implied thermochemical equations.  A variation of the RAND 

method with enhancements to the numerical algorithm that 

improve computational stability and convergence rate is used to 

solve these equations.  A generalized equation of state capable of 

handling both vapor and liquid systems is used to obtain the 

partial fugacities and free energies.  Results are presented for 

gaseous and aqueous systems. 

 

NOMENCLATURE 

 

A = square matrix containing ∂gI/∂yJ 

B = column matrix containing -gI 

C = matrix containing elemental compositions 

C = specific heat [J/gram-mole/K] 

D = column matrix containing elemental abundances 

g = specific Gibbs free energy [J/gram-mole] 

G = Gibbs free energy of the system [J] 

h = specific enthalpy of a component [J/gram-mole] 

M = the number of components 

N = the number of elements or irreducible members 

s = specific entropy of a component [J/gram-mole/K] 

y = component quantity [gram-moles] 

Y = column matrix containing yJ 

 

Greek 

Φ = quadratic function with linear constraints 

φ = quadratic function 

λ = Lagrange multipliers 

Λ = column matrix containing λI 

Ω = column matrix containing linear constraints 

 

Subscripts 

0 = reference or ground state 

I = first index or row number 

J = second index or column number 

 
1
 Abundance of elements, reactants, or products is the quantity (or the number 

of moles) present in the system.  This is different from concentration which 

might be moles per unit volume and mole fraction which is the abundance of 

one species divided by the total number of moles. 

 

INTRODUCTION 

 

Chemical reactions are the controlling phenomena in many 

processes of interest to the utility and process industry.  The 

primary method for analyzing chemical reactions is to consider 

their ultimate or equilibrium state.  The CREST (Chemical 

Reactions and Equilibrium Thermodynamics) computer code was 

developed to be a convenient and versatile means of determining 

chemical equilibria. 

 

The Gibbs Condition or Minimum Free Energy Postulate 

 

The Gibbs condition or Minimum Free Energy Postulate is an 

extension of the Second Law of Thermodynamics and is 

equivalent to the condition of maximum entropy subject to the 

constraint of energy conservation or the First Law of 

Thermodynamics (van Wylen and Sonntag, 1973).  Implicitly 

assumed in equilibrium analyses is the Ergodic Surmise which 

can be stated: the ultimate description of an equilibrium system is 

independent of time (Pierce, 1968).  The Gibbs condition can 

then be summarized: the tendency is for reactions to proceed 

such that the free energy is reduced, the final condition being that 

of minimum free energy. 

 

Throughout this development it will be assumed that the 

thermodynamic systems in question are "open" (viz. maintained 

at constant pressure).  In order to apply the developments to a 

system that is "closed" (viz. maintained at constant volume) all 

references to the Gibbs free energy and enthalpy can be replaced 

by Helmholtz free energy and internal energy, respectively. This 

is done automatically by the CREST computer program. 

 

Solution of Chemical Equilibria 

 

The equilibrium chemical reaction problem is defined as 

satisfying the Gibbs condition subject to the element abundance
1
 

and non-negativity
2
 constraints. 

 

 

 
2
 The non-negativity constraint is the same as recognizing that one cannot 

have negative moles of something. 
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The Gibbs condition is nonlinear; whereas the element 

abundance constraints are linear.  The strategy employed here is a 

variation of the RAND method (White, et al., 1958), where the 

unknowns are the molar abundances.  The resulting nonlinear 

system is solved in an iterative manner as a sequence of 

linearized systems which satisfy the non-negativity constraint at 

every iteration and the element abundance constraint at most 

iterations (excepting those which would violate the non-

negativity constraint), leaving the free energy extrema to be 

approached only as the iterations converge. 

 

FORMULATION 

 

The formulation begins with the mathematical expression for the 

Gibbs condition and the elemental abundance constraints.  As 

with the RAND algorithm, these constraints are imposed through 

the use of Lagrange multipliers.  The resulting set of nonlinear 

simultaneous equations is solved using a hybrid method which 

will be described subsequently. 

 

The Gibbs Condition 

 

The Gibbs free energy of a system is the sum of the product of 

the molar abundances and the specific free energies of the 

components, or 

The extrema (and in particular the minima) of G are located at the 

point(s) where the gradient of G is zero (i.e., where the partial 

derivatives of G with respect to the molar abundances, yI, are 

zero).  This can be expressed as 

Substituting the definition of G, or Equation 1, into Equation 2 

yields a set of nonlinear simultaneous equations which can be 

expressed in matrix form by 

where Y is the column matrix containing the molar abundances, 

yI, A is the square matrix having the elements 

and B is the column matrix containing the free energy of the 

components, or 

Equation 3 is nonlinear because the elements of the matrix (i.e., 

the component specific free energies and their partial derivatives) 

depend on several factors, including the molar abundances, yI. 

 

The Element Abundance and Non-Negativity Constraints 

 

The constraints conserving the abundance of the N elements (or 

irreducible members--which could be ions) of the system can be 

expressed as a system of N simultaneous linear equations 

involving the M molar abundances, or 

where C is a rectangular matrix having N rows and M columns 

and D and Ω are column matrices having M elements.  The non-

negativity constraints can be expressed by 

 

Application of Lagrange Multipliers 

 

The method of Lagrange multipliers is the typical way of solving 

constrained extrema (Wylie, 1975).  In order to implement this 

method, it is necessary to define a function whose solution is the 

desired extrema (i.e., the Gibbs condition).  The quadratic 

function whose solution is Equation 3 can be expressed in matrix 

form by Equation 8 (Ortega and Rheinboldt, 1970). 

Defining the Lagrange multipliers, 

the element abundance constraints can be added to form the 

constrained function: 

The extrema of the function Φ occur when the partial derivatives 

with respect to the molar abundances, yI, and the Lagrange 

multipliers, λI, are all zero.  This condition can be expressed by 

the following partitioned matrix, having N+M rows and columns. 

 

 ┌─┬──┐ ┌─┐   ┌─┐ 

 │A│CT│ │Y│   │B│ 

 ├─┼──┤ ├─┤ = ├─┤ 

 │C│0 │ │Λ│   │D│ 

 └─┴──┘ └─┘   └─┘ 

 

METHOD OF SOLUTION 

 

Equation 11 is the essence of what Smith and Missen (1982) 

refer to as the "RAND algorithm." White, Johnson, and Dantzig 

(who were working for the RAND Corporation at the time) 

introduced the same basic equations in 1958, although they came 

to them through a different approach.  They began with an 

expression for the free energy of a mixture of ideal gases, applied 

in their words the "Method of Steepest Descent", and used the 

first term in a Taylor's expansion of the mixture free energy to 
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arrive at essentially the same equations.  In the terminology of 

Smith and Missen, what White, Johnson, and Dantzig developed 

was a second order, nonstoichiometric, algorithm using the 

Newton-Raphson method of solution.  Formulating these 

equations is one matter; developing a practical manner in which 

to solve them is quite another.  Smith and Missen (1982) and 

Cruise (1964) provide some helpful flow charts which illustrate 

the basic steps involved. 

 

Solving the Simultaneous Equations 

 

In Equation 11 matrices A and B are nonlinear, while C and D 

are linear.  The original RAND method is basically a straight 

Newton iteration.  Newton's method is not always stable or rapid. 

 An adaptive hybrid of the Newton, Steepest Decent, and 

Conjugate Gradient methods is used to make the solution more 

robust.  This method is described by Benton (1991); however, the 

necessity and basis for it can well be gleaned from Ortega and 

Rheinboldt (1970), Powell (1977), More and Sorensen (1984), 

and Fletcher (1987). 

 

Computation of the Free Energy 

 

How one evaluates the elements of matrix A determines whether 

the method is restricted to a mixture of ideal gases--as was the 

case with White, et al.--or whether it can be applied to real 

systems composed of real substances.  The mathematics are the 

same until actually evaluating Equation 4 (i.e., the partial 

derivatives of the free energy with respect to the molar 

abundances).  The effort which must be invested in evaluating 

these partials depends on the accuracy required and the degree of 

nonideality exhibited by the system.  The CREST computer code 

was developed in such a way that it provides varying levels of 

complexity.  Some substances are treated as ideal gases while 

others are not.  The mixing rule can also be selected.
3
 

 

Equation of State and Mixing Rule 

 

Equations of state and mixing rules abound in the literature.  The 

reasons for selecting one over the others vary almost as much as 

the equations and rules themselves.  The current selection was 

based on the criteria that there be exactly three roots of any 

subcritical isotherm, that Maxwell's Criterion
4
 hold, that all the 

critical properties match exactly, that an excessive number of 

empirical data are not required, and that the equations be 

reasonably accurate not only for "well-behaved" substances but 

for a group of substances chosen for their notorious "ill" 

behavior: water, ammonia, carbon dioxide, and neon. 

 
3
 A mixing rule is a model for the behavior of a mixture--specifically 

how the properties of the individual species are influenced by the 

presence of the other species in the mixture. 

 

The cubic equation of state described by Fuller (1976) was found 

to be the most satisfying in regards to these criteria.  Maxwell's 

Criterion is used to infer the saturation pressure from the 

equation of state.
5
  As stated previously, opinions vary 

considerably as to the selection of equations of state.  Abbott 

(1973) provides a very enlightening discussion of the advantages 

and limitations of cubic equations of state. The correspondence 

by Chung, Hamam, and Lu (1977) in which they discuss the 

greater accuracy of the method which Chung and Lu developed--

provided one is not so concerned about polar molecules--

illustrates these varying preferences and perspectives. 

 

Mixing rules also vary considerably.  Smith and Missen (1982), 

Prausnitz (1969), and Stadler (1989) provide detailed discussions 

of mixing rules.  The mixing rule currently used by the CREST 

code is that of Redlich and Kwong (1949) as it is easily 

implemented and provides a significant level of improvement 

over the ideal mixture model.  Eventually the method described 

by Liu, Wimby, and Gren (1989) will be implemented as an 

option. 

 

Initial Estimates of the Molar Abundances 

 

There is also the necessity of obtaining initial estimates of the 

molar abundances, yI, and satisfying the non-negativity 

constraints.  The SIMPLEX method (cf. Wagner, 1975) is used to 

accomplish this.  The molar abundances are bounded below by a 

small positive number (for practical purposes this needs to be 

somewhere between the square and cube root of the smallest 

number greater than zero that the computer can store) and 

bounded above by the abundance of the most restrictive 

irreducible constituent (e.g., the upper bound on CO2 would be 

the smaller of the total number of moles of C and half that of O). 

 Matrices A and B can be linearized in order to obtain the initial 

estimates by computing secant partials at the lower and upper 

bound. 

 

IMPLEMENTATION 

 

A computer code, CREST, was developed in order to implement 

these algorithms.  The substances participating in the reaction and 

their properties as well as how their state is to be treated and their 

mixture computed is defined for CREST in a symbolic form 

which is interpreted based on syntax. 

 

The Use of Syntax to Define Substances and Reactions 

 

Syntax is used not only to identify the species but to distinguish 

between irreducible, conserved participants (i.e., elements or 

ions) and reducible participants (i.e., compounds).  The elemental 

 
4
 Satisfying Maxwell's Criterion is equivalent to requiring continuous 

saturation phase fugacity. 

 
5
 Another way of stating Maxwell's Criterion is that the area under a 

subcritical isotherm (on a pressure-volume diagram) is equal to the 

saturation pressure times the difference in phase volumes. 

(and electron) abundance constraints can be determined 

automatically from the composition of the compounds which is 

specified in a user-defined database.  Table 1 is an abbreviated 

excerpt from a CREST database.  In the interest of brevity, not all 

of the information for each substance is listed in the table.  This 
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other information includes such things as the temperature 

dependence of the constant pressure specific heat at zero 

pressure, Cp0, the standard state, and critical properties if known. 

 The thermodynamic and transport properties in the absence of 

any chemical reactions can be accessed through a separate 

computer code, FEAST (Benton, 1987). 

 

The reaction to be solved is defined by entering it in symbolic 

form interactively or in a file as illustrated in Equation 12.  The 

number of moles of the reactants must be specified (or assumed 

to be 1).  Of course, the number of moles of products must not be 

specified, as these are the solution sought after. Various 

conditions such as temperature, pressure, and heat transfer and 

constraints such as adiabatic, isobaric, and isometric can also be 

prescribed interactively, in a batch file, or progmatically.  The 

equation of state to be used for each species as well as the mixing 

rule is also specified by the syntax.  The equation of state is 

specified by a special character preceding the name of the 

substance and the mixing rule is specified by a special character 

preceding the equals sign in the reaction. 

 

Acetylene+2.7Odia=Water+Cmonox+Cdiox+H+Hdia

+O+Odia+Hydroxl+... (12) 

 

Programmatic Control 

 

The method is implemented in the form of a computer code 

which can be run interactively, from a batch file, or spawned as a 

subtask from within another process with complete programmatic 

control.  A source code written in C is supplied with the CREST 

executable which illustrates how the program can be spawned 

within a loop or loops in order to model sequential reactions, 

variation of reactant species, and produce custom graphical 

output. 

 

Program Performance 

 

Solution of 72 simultaneous reacting species in an aqueous 

solution requires between 4 and 12 minutes on a PC (20 MHz 

80386/7) depending on the mixing model used. Solution of 100 

simultaneous reacting species in a gaseous mixture requires 

between 10 and 30 minutes on such a machine depending on the 

mixing model used. Simple reactions (e.g., 20 species in an ideal 

gas mixture) requires only a few seconds.  Most of the CREST 

code was written in FORTRAN, except for the I/O, full-screen 

editor, reaction interpreter, and matrix solver which were written 

in assembler. 

 

Program Results 

 

Figure 1 shows the computed variation with temperature of 20 

product species resulting from the combustion of coal.  Figure 2 

shows the computed variation with oxygen of 14 product species 

resulting from the combustion of a hydrocarbon in the presence 

of sulfur.  Figure 3 shows the computed variation with 

hypochlorite of 23 product species resulting from the corrosion 

of cement containing 3 variants of asbestos in an aqueous 

solution.  Every step from the reaction to the hard copy of these 

plots was provided by the program CREST.  Certainly many 

more examples could be given. More complex reactions (e.g., 

sequential steps such as occur in the presence of a catalyst and 

more species) have been analyzed using the program; but this 

increased complexity is difficult to present graphically and 

concisely. 

 

 

Model Comparison 

 

The CREST computer code is similar in concept to the 

STANJAN computer code which was developed by Prof. 

William Reynolds of Stanford University.  The basic 

methodology of finding the minimum free energy subject to the 

elemental abundance and non-negativity constraints is the same.  

Both codes are interactive, make use of an expandable database 

of substances, and run on IBM compatible PCs.  CREST, 

however, has several features not present in STANJAN.  These 

include: optional real gas equations of state, nonideal mixing 

rules, a built-in full-screen editor, graphical output to 12 different 

devices, batch or complete programmatic control, and all of the 

matrix operations are coded in assembler for maximum speed.  

The addition of non-ideal mixing rules alone represents a 

considerable increase in complexity. 

 

CLOSING 

 

The rather complicated task of determining thermochemical 

equilibria has been implemented in the form of a computer code 

which is relatively simple to use.  The code (CREST) has been 

available on the ASME/CIME computer in one form or another 

since 1988 and has been satisfactorily used to model a variety of 

problems including: flue gas desulfurization, ammonia injection 

into flue gas, calcium oxide production, and calcium leaching 

from wetted fiber reinforced cement products. 
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