
1

STEAM CYCLE ANALYSIS SPECIFICALLY FOR THE MICROCOMPUTER

Dudley J. Benton presented at the
Tennessee Valley Authority ASME Winter Annual Meeting
Engineering Laboratory December 26-30, 1990
Norris, Tennessee Houston, Texas

ABSTRACT

A steady-state steam cycle model is presented as
a practical example of an innovative approach to large
nonlinear systems analysis on a microcomputer. Rather
than scaling down an existing mainframe code to fit on a
PC and being forced to chose between limited versatility or
impractical runtimes, the approach described here is to
develop the methods which best utilize the strengths of a
microcomputer and avoid its weaknesses as much as
possible. This same concept could be applied to systems
other than steam cycles. Some of the differences between
mainframes and microcomputers which significantly impact
engineering software are also discussed.

INTRODUCTION

Computers are becoming more and more
indispensable as tools of the engineer. Energy systems
can be among the more complex applications of computer
analysis. Energy systems have been analyzed by
computers for the past few decades to some degree--
mostly on mainframes. With the introduction and increasing
availability of microcomputers having sufficient power to
perform technical analyses, a number of mainframe codes
have been adapted to run on these smaller machines.

The basic concepts on which these mainframe
codes were developed may be ill-suited to microcomputers
because of basic differences in their hardware architecture
compared to mainframes. The engineer who develops such
a code (software) may well understand the analysis which
needs to be performed, but not the way in which the
particular machine (hardware) will carry out the task.

Engineers often see a computer as a "black box"
which dutifully performs calculations as symbolically
instructed to do so in FORTRAN. Very few engineers can
program in assembler or have any significant understanding
of what instructions are generated by a high level language
compiler.

Optimum Performance from Available Equipment

The challenge for the software developer is to
obtain the optimum performance (speed, user-friendliness,
etc.) from the available hardware. Differences in mainframe
and microcomputer hardware and various high level
language compilers are not insignificant. Ignoring these
differences when developing software will not necessarily
result in bad programs, but will result in inefficient ones.

Depending on optimizing compilers to compensate for the
differences is simply ineffective.

Optimized Preprocessing + Interpretive
Postprocessing

Nonlinear systems such as steam cycles require
iterative solution. The innovation illustrated here is to
separate the task into two steps: optimized preprocessing
and interpretive postprocessing. Whereas most codes
have fixed procedures and accept only data as input, the
code required for the second step in this analysis task must
accept data and procedure. This task separation removes
as much decision making as possible from within the
iteration required to solve the nonlinear system.

Because this optimization is done only once per
configuration, greater computational effort can be invested
in the optimization step which will be recovered many times
over in running the second step of the analysis. The ability
of the second step program to operate on both data and
procedure (i.e., real-time interactive code and data
manipulation) greatly expands the available level of user
interaction for customizing and debugging.

The Illustration: A Steady-State Steam Cycle Model

In the first step--optimized preprocessing--the
paths of influence between each component in the system
are analyzed and the optimum manner in which to solve
each component is determined. Also in this first step the
optimum order in which to combine the components into the
ensemble which represents the system and the optimum
way in which to store this information in a database is
determined. This optimum procedure will be unique to each
system and need only be determined once for a given
system unless its configuration is changed. The second
step--interpretive postprocessing--is to actually solve the
system for a prescribed set of conditions or constraints.

Because the resources allocated to analyzing the
system are also optimized in the first step, even systems
with as many as a thousand components (e.g., a nuclear
system with three complete independent strings1 of heaters,
six 2-stage MSRs2, and 3 series condensers each with a
different pressure3) can be solved on a PC (20MHZ 80386)
in less than 15 minutes. A typical single-string fossil unit
requires less than 2 minutes on such a machine.
Furthermore, the ability of the second step to interpret and
execute FORTRAN-like code enables the engineer to
embed existing code for specific components or develop

2

custom code and even thermodynamic properties for
specialized applications.

This concept of subdividing a larger task into
optimized preprocessing and interpretive postprocessing
steps could certainly be applied to systems other than
steam cycles. The present application to steam cycles is
simply used as a demonstration that the concept is
practical. The innovation illustrated in this steam cycle
model is not that of solving simplified equations or idealized
configurations in order to make a formidable task more
tractable, but of taking a different approach to solving the
same equations--an approach specifically designed to
utilize the strengths of microcomputers and avoid their
weaknesses.

1 A 2- or 3-string steam system is one
having two or three parallel streams of
nominally identical feedwater heaters
(regenerative heat exchangers) and
feedpumps which ideally carry one-half or
one-third of the feedwater and extraction
steam. Their operation in prototype
systems is not identical; however, it is
common practice to lump them together
into a single stream. In the cited example
these are not lumped together, but rather
analyzed separately so that the actual
operating conditions can be accurately
modeled. Much as is the case in solving
a parallel pipe network, solving a 3-string
steam system requires more than three
times as much computational effort as a
single stream system.

2 An MSR, or Moisture Separator Reheater, is a
combination moisture remover and tube-in-shell
heat exchanger which is used in nuclear powered
steam systems to dry the steam before entering
the low pressure turbine(s). Their function is to
protect the low pressure turbine(s) from droplet
impact erosion and vibration at the expense of
thermal efficiency. Their inclusion in a steam
system greatly increases the numerical "stiffness"
and thus computational effort required to solve the
system as they are a strong positive feedback
device. A 2-stage MSR has both a high
temperature and low temperature reheating tube
bundle which are supplied with high and low
pressure extraction steam respectively. Two-stage
MSRs result in greater numerical "stiffness" and
more positive feedback than do single-stage
MSRs.

3 Some steam systems are designed with multiple
condensers arranged in series such that each
successive one receives the cooling water from
the previous one. This design results in multiple
backpressures. Because many steam cycle codes
are unable to handle this arrangement, it is
common practice to lump the individual
condensers and low pressure turbines into a single

composite one. Such a practice, of course,
precludes an as-built analysis of the prototypical
system. In the cited example the three condensers
and low pressure turbines are analyzed
individually. Modeling series condensers
increases the positive feedback in the system, the
resulting numerical "stiffness", and the
computational effort.

MATCHING SOFTWARE TO HARDWARE

Processors are simply not generic number
crunchers. They do not all perform the same basic tasks
with proportional speed and convenience. While there are
significant differences between contemporary mainframes
of differing design, the differences between mainframes
and microcomputers are probably more striking. These
differences are not just speed and size. While computer
science majors are no doubt well drilled in these
differences, engineers may not be.

Benchmarks Can Be Misleading

Benchmarks using supposedly unbiased machine
speed comparison programs are in the author's experience
essentially useless if not actually misleading. A few
examples may serve to illustrate how important
understanding the matching of software to hardware can
be. In the past few years the author has performed various
speed comparisons on a dozen or so mainframes,
microcomputers, minicomputers, and workstations.
Manufacturers will intentionally not be mentioned in what
might be considered a negative context.

One benchmark provided by a manufacturer
showed the floating-point speed of their machine to be 50%
greater than a competitor's similar machine. This
benchmark did not contain any transcendental functions
(e.g., arctangent). When transcendental functions were
added, the comparison became 2 to 1 in favor of the
competitor. The reason for this discrepancy was found to
be the absence of hardware transcendental functions in one
machine and the presence in the other. If one were
interested in transcendentals this would be an important
discovery--hopefully made before the purchase. This
illustrates how it can be important to understand the
hardware before developing the software. In this case the
first machine would be much better suited to computing
Legendre than Fourier transforms. An optimizing compiler
cannot make such a compensation.

Another comparison between two similar machines
showed a 3 to 1 advantage with a program requiring many
thermodynamic property evaluations (basically polynomial
expansions), yet no advantage with a program requiring
iterative solution of large matrices. In this case the floating-
point processor in the first machine was 3 times as fast as
the second. However, the first machine was a hybrid 16-bit
processor which needed additional overhead to address
more than 64K bytes of code or data; while the second was

3

a true 32-bit processor having no such difference in
addressing overhead for the two programs. In this case the
first machine might be much better suited to solving
potential fields using boundary elements than finite-
differences. Again, an optimizing compiler cannot make
such a compensation.

A third comparison was between two FORTRAN
compilers generating code to be run on the same
microcomputer. The initial tests showed a 4 to 1 advantage
in favor of the first compiler. It was subsequently
discovered that the first compiler used short integers (16-
bit) by default and the second defaulted to long integers
(32-bit). When the option was set for the second compiler
to use short integers and the test rerun, there was only a
negligible difference in the two with a slight advantage in
favor of the second. A compiler cannot determine
beforehand that integers above 32767 will never be needed
and thus instructions to use long integers can be ignored.

More illustrations could be given, but these three
are easily repeatable and serve to illustrate the point: there
is a definite advantage to understanding the hardware and
the compiler before developing software.

Utilizing Strengths/Avoiding Weaknesses

Microprocessors--especially hybrid 8/16-bit ones
like Intel's--are quite well suited to character (8-bit)
operations. Mainframes and true 32-bit minicomputers and
workstations are comparatively less suited to these tasks.
In order to perform character operations on most true 32-bit
processors it is necessary to either pad (using only 1 of 4
bytes in each word) or mask-and-shift (eliminating
unwanted bytes and right justifying). Padding wastes 75%
space (for 24 unused bits per word) and increases memory
shuffling and page faulting. Mask-and-shift operations at
least quadruple the work required for otherwise simple
comparisons. An interesting and enlightening discussion of
the differences between various computer hardware
architectures and optimal code generation in light of these
differences is given by Muchnick (1988).

16-bit microprocessors such as Intel's are capable
of performing long integer (32-bit) operations, but at a
considerable increase in computational expense. Long
integer addition and subtraction require approximately three
times that of similar short integer operations. Long integer
multiplication takes at least 4 times as long as short; and
long integer division may take 64 times as long as a similar
short integer operation.

The relative speed of floating-point and integer
calculations varies considerably with computer architecture.
Some machines (e.g., HP-1000F and HP-A900) perform
floating-point calculations at a rate comparable with integer
operations. Other microprocessors specifically designed to
handle floating-point operations (e.g., Intel 8x87) are much
slower than their integer counterpart. This mismatch in the
Intel floating-point (or co-) processors has become even
more pronounced as the integer (main) processors have

improved. The Intel processors have improved in
architecture and speed at a much faster pace than the
floating-point coprocessors (Fried, 1985). A 20MHz 80386
is approximately 20 times as fast as a 5MHz 8086;
whereas a 20MHz 80387 is only 4 times as fast as a 5MHz
8087. The disparity in the early processors (8086/8087)
was already severe and has subsequently worsened by a
factor of 5. This disparity should not be ignored in the
development stage if these machines are the destination of
the software being developed.

Some floating-point calculations should be avoided
if at all possible. For instance, most engineers who have
long used hand-held scientific calculators are surprised to
find out that Intel coprocessors do not have an instruction
to perform exponentiation (eX, 10X, or XY). In fact, such
operations require no less than 40 instructions in assembler
and are encoded as function calls by high-level language
compilers with that additional overhead (Microsoft, 1987).
Exponentiation operations are common in steam property
calculations.

Other floating-point calculations can be converted
to integer operations with implied divisions. On machines
with a large disparity in the relative speed of integer and
floating-point operations this can have a substantial effect
on speed. Many helpful details on the operation of Intel
floating-point processors and assembly language code are
given by Duncan (1990).

Double precision (64-bit) floating-point operations
are unnecessary in most engineering applications except
matrix inversion and are totally unnecessary in steam cycle
analysis. Single precision (32-bit) floating-point operations
require only half the memory and may be as much as four
times as fast depending on the hardware. Some compilers
actually default to double precision, but can be instructed
not to; while some others do not even support single
precision. This is an important consideration when
selecting a compiler and even a language in which to
develop a program.

Hybrid 8/16-bit microprocessors have a distinct
disadvantage compared to true 32-bit machines when
accessing large arrays (above 64K-bytes). When
developing a program to run on one of these machines it is
crucial to avoid large arrays as much as possible and to
access them in blocks if this cannot be avoided (most
processors have special instructions for moving blocks of
data). The selection of a compiler can also make a
significant difference in this situation. Depending on the
compiler, accessing elements of an array by equivalence
can also be much faster than by index. Detailed
discussions of the differences between various compilers
of the same high-level language and their relative strengths
and weaknesses are given by Wolf (1985) and Shaw (1988)
for FORTRAN and C respectively.

4

Selecting Optimum Algorithms

Even complicated more efficient algorithms are
preferable to brute force. Microprocessors can generally
handle more code and more sophisticated algorithms much
better than simplistic code and many iterations. Multi-step
methods which utilize information from previous iterations
are generally preferable to single-step methods which only
utilize information from the current iteration and rely heavily
on relaxation for stability.

It regrettably needs to be mentioned, that textbook
algorithms are frequently not the most efficient ones
available. There is a considerable lag time between the
writing of even the best textbook and its selection from the
shelf of a working engineer. Most textbooks are intended
to convey principles on which the student can build--not the
latest developments. This is especially true in textbooks
from one field (e.g., thermodynamics or heat transfer) which
draw on methods from prior existing textbooks from some
other field (e.g., numerical mathematics); and engineers
are not alone in their tendency to seek out information from
within the field with which they are most comfortable.

Kernalization

A final and extremely profitable area of software
improvement is kernalization, or identifying computationally
intensive specific tasks within a program and developing
specialized code to perform that task in an optimal manner
(Hewlett-Packard, 1980). The use of assembler to encode
these kernels is especially advantageous. Many such
kernels are available which were written in assembler for
Intel processors but can be called from a high-level
language such as FORTRAN (Benton, 1987). For example,
one such kernel will evaluate a regular polynomial 5 times
as fast as optimized FORTRAN or C. Another will take the
absolute value of an array of floating-point numbers 17
times as fast as optimized FORTRAN or C.

Expected Return on Development Effort

Admittedly, all of these suggestions increase the
effort required in the development stage of a code. It is
implicitly assumed in this paper that a greater investment in
development--which is done once--will yield even greater
dividends in application--which is done many times.

SPECIFICS OF THE STEAM CYCLE MODEL

The general features of the steam cycle model are
presented as examples of how these concepts might be
implemented and as suggestions of what might be done in
this and other areas. The main emphasis of this paper is
not to present the numerical results of this compared to
other similar programs, although such information is
available (Shelton, 1988). The objective here is to stimulate

development and to offer innovative, proven techniques to
other software developers. To this end, over a hundred
parts and related programs have already been made
available through the ASME/CIME computer, including
various FORTRAN and assembler source codes,
executables, examples, and documentation (Benton, 1987-
90).

User Interface Shell

In addition to the two-step analysis procedure
already discussed, the steam cycle model is managed by a
customizable user interface shell program. This shell was
written in assembler and is not limited to steam cycle
analysis. The shell performs such tasks as managing
different applications (i.e., keeping track of the data and
procedure files associated with each steam system). The
shell also makes sure that the user performs certain steps
in the proper order (e.g., the user may change the
configuration of a system many times or in several steps,
but it must be re-optimized before it can be solved). The
shell also routes the output from the steam cycle model to
the CRT, printer, or a file. The shell allocates system
available memory in order to run other tasks such as the
two-step steam cycle model and auxiliary programs (e.g.,
manufacturer-specific turbine characteristics, heat balance
plotting program, thermodynamic property tables, cooling
tower analyzer, and a quick simplified steam cycle model).

Optimizing Preprocessor

The first part of the two-step steam cycle model--or
the optimizing preprocessor--performs several tasks. It
receives information in symbolic form (i.e., convenient for
the user) and performs a thorough check for consistency.
During the consistency check the program will automatically
add as many mixing and/or splitting junctions as required to
connect the components as implied by the user. It then
automatically numbers and names the minor components
(e.g., pipes, nodes, junctions, etc.). This service saves
considerable effort over other programs which require the
user to number and keep track of every single junction and
pipe or flow stream and carry these through any
configuration changes. Once the preprocessor has
numbered and assessed the configuration of the system, it
determines the optimum (space-saving) manner in which to
store this information in a database which is passed to the
postprocessor.

The preprocessor then analyzes the connections
or paths of influence between the components as to their
degree of dependence and implicitness. The optimum
(timesaving) order in which each parameter (i.e., flow,
energy, temperature, pressure, etc.) is to be computed by
the postprocessor is determined based on its degree of
dependence and implicitness. For instance, an
independent parameter should be computed before a
dependent as should an explicit one before an implicit.
Some components are found by the program to be solvable
from the inlet(s) out; while others may be solved from the

5

exit(s) in. This bidirectional explicitness is part of the
optimization process.

As this optimize-by-ordering process proceeds, all
parameters which were indeterminate will become either
explicitly or implicitly determinant. When no more explicit
relationships between parameters can be found (i.e., all
remaining relationships are implicit), an estimation is made
as to which implicit parameter can be assumed (and later
iteratively corrected) which is most likely to have the least
influence on the rest of the system (i.e., the least critical
guess).

At some point in this process, unresolvable
indeterminacies may be identified. If this occurs, the user
is called upon to select the manner in which to resolve
these. Thus the same system may be solved differently
depending on how the user responds to interrogation. One
example of this is implied split flows. Parallel paths
typically lead to ambiguities. These may be resolved at the
inlet, exit, intermediate point, or some combination of these
depending on the specific connections. When the entire
solution procedure has been determined by this
optimization process, the procedure for solving the system
(including the procedure to correct any assumptions, test
for convergence, and process nonfatal errors) is written to
a file in cryptic form (convenient for the machine rather than
the user). The preprocessor also inserts any custom data
(which can override various defaults), custom procedure
(which can consist of FORTRAN-like code and user-defined
submodels), or custom summary (user-defined output
instructions) at what it determines to be the appropriate
location within the data and procedure which the
preprocessor itself has generated. Any encryptions which
can be made in the custom data, procedure, or summary
are also made at this time in order to speedup execution.

The result of the preprocessor is a file which will be
passed to the postprocessor containing all of the data and
instructions it will need to solve the system in an optimal
manner. All of these functions are performed by the
preprocessor using only character (8-bit) and integer (16-
bit) operations.

Interactive System Constraints

After the preprocessor and before the post
processor is run, it is necessary for the user to prescribe the
system constraints. These constraints include such
parameters as main steam flow or net output, boiler exit
temperature or heat input, condenser cleanliness or
backpressure, etc. The user can also "tag" any parameter
in the system and thereby cause it to be treated as a
system constraint. Tagged parameters can be set to a
constant, scaled by some proportion to another system
constraint, specified by a user-defined function (i.e.,
FORTRAN-like code), or even implicitly determined by a
submodel (i.e., many lines of user-defined code).
Prescribing these system constraints is accomplished by
the shell or manager program invoking an interactive menu
utility which interrogates the user for this information or

alternatively uses default values supplied by the
preprocessor.

Interpretive Postprocessor

The second part of the two-step steam cycle
model--or the interpretive postprocessor--also performs
several tasks. It first reads the system configuration
information in cryptic form (i.e., convenient for the machine
rather than the user), including how this is to be stored in a
temporary database. This database is necessary due to the
limited memory available with PCs and the large amount of
data necessary to describe complex steam systems having
hundreds or even thousands of components. The
postprocessor accesses this information in the database in
blocks which are swapped according to "age" and
frequency of use. Thus, the database manager (which is a
part of the postprocessor) "learns" as the system is being
solved. Only a minimal consistency check is performed on
the system by the postprocessor as it reads the system
configuration and creates the database.

After this point, the postprocessor basically
executes the procedure provided to it by the preprocessor.
Either the combination of these instructions and the system
constraints will result in the solution of the system and
listing of the results, or a nonfatal error (the procedure for
dealing with each having also been supplied by the
preprocessor) may be encountered, or the intervention of
the user (by entering an unsolicited keystroke) may be
detected. If the procedure is carried out to completion, the
program stops. If a nonfatal error is encountered, the user
may be invited to intervene, correct the problem, and order
the program to resume or abort.

If the user intervenes by choice or invitation, the
program can process any of its several hundred commands
interactively as if it were carrying out the instructions of the
preprocessor. These commands include solution of
components (i.e., turbine, pump, heat exchanger, etc.) and
interactive execution of FORTRAN-like code (equations,
print, read, rewind, goto, if(...)then, simultaneous equations,
thermodynamic properties, etc.). Also provided in this
interactive mode are on-line help and a built-in editor which
can recall a predetermined, adjustable number of previous
commands.

The command interpreter (which operates in either
batch mode--reading commands from a file--or interactive
mode--reading commands from the keyboard), can
efficiently process a wide range of commands. These are
interpreted in order of convenience for the machine so as
to improve speed. Cryptic (i.e., machine-oriented) form is
checked before symbolic (i.e., user-oriented) form, as are
abbreviations before entire expressions. Most frequently
used commands are checked before less; thus the
command interpreter "learns" the style of the commander as
it processes commands. Further improvements in
efficiency are realized as most frequently used expressions
and macros4 are kept in a convenient location within the
database.

6

Comparison and Contrast to Other Similar Codes

Several other large-scale, off-line, steady-state
steam cycle codes are commercially available and widely
used. These include PEPSE (Energy Inc.), SYNTHA
(Syntha Corp.), THERM (EDS Assoc.), and THERMAC
(Expert-EASE Systems, Inc.). These codes in some form
are available for use on mainframe, mini-, and
microcomputers. SYNTHA has been available on Control
Data mainframes for a number of years. PEPSE, THERM,
and THERMAC have logged significant use on
microcomputers (see for instance, Dixon et al., 1984,
Larson et al., 1988, Kettenacker, 1988, and Jain et al.
1989.) This is by no means an exhaustive list of steam
cycle codes. Neither is there any intention to deprecate
these or any other codes.

The present code, called SCRAP (Steam Cycle
Rankine Analysis Package), was developed from start to
finish on and for microcomputers. It has never been run on
a mainframe; nor would it be suitable for use on a
mainframe. The strengths, weaknesses, and idiosyncrasies
of microcomputers were carefully considered at every step
of its development. Substantial portions of the code
(including the database manager, file and CRT I/O, editor,
command interpreter, and the steam property generating
functions) were written entirely in assembler. None of the
previously mentioned codes utilize a dynamic database in
which to store the information describing large systems
(except that which might be part of a virtual operating
system external to the code). None of the previously
mentioned codes utilize optimized pre- and interpretive
postprocessing. None of the previously mentioned codes
can interactively process code or support application-
specific customized procedure without recompiling the
source code.

4 Macros are single symbols that refer to
an entire cluster of individual commands
which may in turn include other macros.
The preprocessor defines some macros
for its own use. The user can define
other macros or redefine the ones defined
by the preprocessor; thus changing the
way in which the postprocessor handles
certain equipment and exceptions.

The present steam cycle code is sufficiently
different in its developmental concept from the previously
mentioned codes as to represent a distinct technology.
SCRAP is fundamentally different. Perhaps the most
striking difference is the command interpreter which can
batch or interactively process symbolic algebraic
expressions, file manipulation, and I/O. The command
interpreter can even process expressions having nothing to
do with steam cycles or engineering. This same command
interpreter kernel could be used as the core for other
engineering applications such as chemical process plant
modeling.

Even if there were no need to handle very large
systems by using the dynamic database, and even if the
speed of solving the system were of no concern, the
versatility of being able to prescribe custom procedure for
each unique application would make the concept used in
the present model an attractive alternative to other codes.
Although there is some sense in which similar steam
systems are "generic" in design, there seem to be unique
arrangements or components in most real systems. The
past approach to handling these uniquenesses has been to
either approximate using a near equivalent or provide
numerous specific components (modifying the source code
to handle each new one). The present approach is to have
the preprocessor provide the procedure to handle the
common components and then allow the engineer to
provide any unique code (all with no modification to the
source code) to handle uncommon components or
arrangements.

SUMMARY

Computers are simply not generic number
crunchers. At least the basic class of hardware (i.e.,
mainframe, mini, micro, 32-bit/16-bit, etc.) must be
considered before developing software if it is to be efficient
or even practical. Significant advantage can be realized
through more efficient use of a computer's resources. The
efficient use of a computer's resources depends on the
approach taken, algorithms selected, and the overall
strategy. Additional effort in the development stage can not
only result in greater efficiency, but also increased flexibility
and even extended capabilities. The concept of subdividing
a larger task into optimized preprocessing and interpretive
postprocessing has been presented as an innovative way
to utilize the strengths of microcomputers and avoid their
weaknesses. A steam cycle analysis program has been
used to illustrate the merit of this approach.

REFERENCES

Benton, D. J., 1987, "FLIB: Fortran Callable Library",
ASME/CIME Bulletinboard, (608)233-3378.

Benton, D. J., 1988, "PROPS: Thermodynamic and
Transport Properties of Steam and Moist Air with Selected
Power Plant Equipment," loc. cit.

Benton, D. J., 1989, "QUEST: Quick Estimate Steam
Turbine Performance Code", loc. cit.

Benton, D. J., 1990, "MUPIT: Multi-Unit Power Plant
Cooling System Model", loc. cit.

Dixon, R. R., N. B. Kraje, and R. C. Roberts, 1984, "Current
Fossil Fuel Power Plant Performance Monitoring Volume 1:
Practices," Report No. EL-3339V1, Electric Power
Research Institute, Palo Alto, CA.

Duncan, R., 1990, "Power Programming: Arithmetic
Routines for Your Computer Programs, Part 6,"

7

PC Magazine, Feb. 13, pp. 297-307. (Also see parts 1-5 in
earlier editions.)

Fried, S. S., 1985, "The 8087/80287 Performance Curve,"
BYTE, Fall, pp. 67-88.

Hewlett-Packard, 1980, "Vector Instruction Set (VIS) User's
Manual" Part No. 12824-90001, Hewlett-Packard Company,
Cupertino, CA.

Jain, P., A. Padgaonkar, T. Kessler, D. Gloski, and G.
Kozlik, 1989 "Plant Thermal Analysis and Data Trending
Using THERMAC," Proceedings, 1989 EPRI Heat-Rate
Improvement Conference, Report No. 1711, Electric Power
Research Institute, Palo Alto, CA.

Kettenacker, W. C., 1988, "Use of An Energy Balance
Computer Program in the Plant Life Cycle," Proceedings,
1988 EPRI Heat-Rate Improvement Conference, Report
No. GS-6635, Electric Power Research Institute, Palo Alto,
CA.

Larson, J. and B. Kraje, 1988, "PC-Based Power Plant
Performance Analysis: Site Delivery of Powerful Analysis
Techniques Now Possible Using PC Technology,"
Proceedings, 1988 EPRI Heat-Rate Improvement
Conference, Report No. GS-6635, Electric Power Research
Institute, Palo Alto, CA.

Microsoft, 1987, Macro Assembler 5.1 Reference, Microsoft
Corp., Redmond, WA.

Muchnik, S. S., 1988, "Optimizing Compilers for SPARC,"
Proceedings, COMPCON'88, San Francisco, CA. (Also
reprinted in _Sun Technology_, Summer 1988, pp. 63-77.)

Shaw, R. H., 1988, "Compiling the Facts on C,"
PC Magazine, Sept. 13, pp. 115-183.

Shelton, R. J., 1988, "An Evaluation of TVA's Steam Cycle
Rankine Analysis Package (SCRAP)," Southern Company
Services, Birmingham, AL.

Wolf, C., 1985, "Serious FORTRAN for the PC,"
PC Magazine, Dec. 24, pp. 161-171.

